基于多传感器模型的移动机器人定位帮助行动不便者

Wassila Meddeber, Arab Ali-Cherif Youcef Touati
{"title":"基于多传感器模型的移动机器人定位帮助行动不便者","authors":"Wassila Meddeber, Arab Ali-Cherif Youcef Touati","doi":"10.17781/P002286","DOIUrl":null,"url":null,"abstract":"This paper deals multi-sensor data fusion problem for mobile robot localization. In this context, we have used data fusion sensors: encoders and ultrasonic sensor. To improve the robustness of localization and to reduce the estimation error we have proposed a Kalman Particle Kernel Filter (KPKF) approach, which is based on a hybrid Bayesian filter, combining both extended Kalman and particle filters. The KPKF filter using a Gaussian mixture in which each component has a small covariance matrix. The Kalman correction updates the weights in order to bring particles back into the most probable space area. This method can be applied for non-linear and multimodal environment and can improve localization performances and reduced estimation error. The proposed approach is implemented on a LIASD-Wheelchair experimental platform. Keywords—Localization; multi-sensor; data fusion; mobile robotics; Kalman filter; particle filter; smart wheelchair.","PeriodicalId":211757,"journal":{"name":"International journal of new computer architectures and their applications","volume":"90 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Mobile Robot Localization Based on Multi-Sensor Model for Assistance to Displacement of People with Reduce Mobility\",\"authors\":\"Wassila Meddeber, Arab Ali-Cherif Youcef Touati\",\"doi\":\"10.17781/P002286\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper deals multi-sensor data fusion problem for mobile robot localization. In this context, we have used data fusion sensors: encoders and ultrasonic sensor. To improve the robustness of localization and to reduce the estimation error we have proposed a Kalman Particle Kernel Filter (KPKF) approach, which is based on a hybrid Bayesian filter, combining both extended Kalman and particle filters. The KPKF filter using a Gaussian mixture in which each component has a small covariance matrix. The Kalman correction updates the weights in order to bring particles back into the most probable space area. This method can be applied for non-linear and multimodal environment and can improve localization performances and reduced estimation error. The proposed approach is implemented on a LIASD-Wheelchair experimental platform. Keywords—Localization; multi-sensor; data fusion; mobile robotics; Kalman filter; particle filter; smart wheelchair.\",\"PeriodicalId\":211757,\"journal\":{\"name\":\"International journal of new computer architectures and their applications\",\"volume\":\"90 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1900-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International journal of new computer architectures and their applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.17781/P002286\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International journal of new computer architectures and their applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.17781/P002286","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

研究了移动机器人定位中的多传感器数据融合问题。在这种情况下,我们使用了数据融合传感器:编码器和超声波传感器。为了提高定位的鲁棒性和减小估计误差,提出了一种基于混合贝叶斯滤波的卡尔曼粒子核滤波(KPKF)方法,将扩展卡尔曼滤波和粒子滤波相结合。KPKF滤波器使用高斯混合,其中每个分量都有一个小的协方差矩阵。卡尔曼校正更新权重,以便将粒子带回最可能的空间区域。该方法适用于非线性和多模态环境,可以提高定位性能,减小估计误差。该方法在liasd -轮椅实验平台上实现。Keywords-Localization;多传感器;数据融合;移动机器人;卡尔曼滤波器;粒子滤波;智能轮椅。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Mobile Robot Localization Based on Multi-Sensor Model for Assistance to Displacement of People with Reduce Mobility
This paper deals multi-sensor data fusion problem for mobile robot localization. In this context, we have used data fusion sensors: encoders and ultrasonic sensor. To improve the robustness of localization and to reduce the estimation error we have proposed a Kalman Particle Kernel Filter (KPKF) approach, which is based on a hybrid Bayesian filter, combining both extended Kalman and particle filters. The KPKF filter using a Gaussian mixture in which each component has a small covariance matrix. The Kalman correction updates the weights in order to bring particles back into the most probable space area. This method can be applied for non-linear and multimodal environment and can improve localization performances and reduced estimation error. The proposed approach is implemented on a LIASD-Wheelchair experimental platform. Keywords—Localization; multi-sensor; data fusion; mobile robotics; Kalman filter; particle filter; smart wheelchair.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Introduction to Sociology of Online Social Networks in Morocco. Data Acquisition Process: Results and Connectivity Analysis SLA-BASED RESOURCE ALLOCATION WITHIN CLOUD NETWORKING ENVIRONMENT Proportional Weighted Round Robin: A Proportional Share CPU Scheduler inTime Sharing Systems Variation Effect of Silicon Film Thickness on Electrical Properties of NANOMOSFET CAUSALITY ISSUES IN ORIENTATION CONTROL OF AN UNDER-ACTUATED DRILL MACHINE
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1