基于q -学习的5G异构网络网络选择新方法

Xiaoqian Wang, Xin Su, Bei Liu
{"title":"基于q -学习的5G异构网络网络选择新方法","authors":"Xiaoqian Wang, Xin Su, Bei Liu","doi":"10.1109/ICT.2019.8798797","DOIUrl":null,"url":null,"abstract":"With the development of heterogeneous wireless networks, it is particularly important to build a reasonable network selection mechanism of user in the 5G heterogeneous networks. In this paper, we improve the reward function in Q-Learning using the AHP (Analytic Hierarchy Process) method and make a simple analysis about network resources competition in the case of multi-agent scenario. Then we propose two network selection algorithms: SANSA (single agent network selection algorithm) and MANSA (multi-agent network selection algorithm) which are based on Q-Learning and Nash Q-Learning respectively to deal with the network selection problem. Simulations show that our proposed algorithms have a better performance of network load balancing than the contrast scheme. In addition, the MANSA can effectively reduce the system total power consumption.","PeriodicalId":127412,"journal":{"name":"2019 26th International Conference on Telecommunications (ICT)","volume":"25 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-04-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"A Novel Network Selection Approach in 5G Heterogeneous Networks Using Q-Learning\",\"authors\":\"Xiaoqian Wang, Xin Su, Bei Liu\",\"doi\":\"10.1109/ICT.2019.8798797\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"With the development of heterogeneous wireless networks, it is particularly important to build a reasonable network selection mechanism of user in the 5G heterogeneous networks. In this paper, we improve the reward function in Q-Learning using the AHP (Analytic Hierarchy Process) method and make a simple analysis about network resources competition in the case of multi-agent scenario. Then we propose two network selection algorithms: SANSA (single agent network selection algorithm) and MANSA (multi-agent network selection algorithm) which are based on Q-Learning and Nash Q-Learning respectively to deal with the network selection problem. Simulations show that our proposed algorithms have a better performance of network load balancing than the contrast scheme. In addition, the MANSA can effectively reduce the system total power consumption.\",\"PeriodicalId\":127412,\"journal\":{\"name\":\"2019 26th International Conference on Telecommunications (ICT)\",\"volume\":\"25 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-04-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 26th International Conference on Telecommunications (ICT)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICT.2019.8798797\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 26th International Conference on Telecommunications (ICT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICT.2019.8798797","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

摘要

随着异构无线网络的发展,在5G异构网络中建立合理的用户网络选择机制显得尤为重要。本文采用层次分析法对Q-Learning中的奖励函数进行了改进,并对多智能体场景下的网络资源竞争进行了简单分析。然后提出了基于Q-Learning和Nash Q-Learning的单智能体网络选择算法SANSA和多智能体网络选择算法MANSA来处理网络选择问题。仿真结果表明,本文提出的算法比对比方案具有更好的网络负载均衡性能。此外,MANSA还能有效降低系统总功耗。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A Novel Network Selection Approach in 5G Heterogeneous Networks Using Q-Learning
With the development of heterogeneous wireless networks, it is particularly important to build a reasonable network selection mechanism of user in the 5G heterogeneous networks. In this paper, we improve the reward function in Q-Learning using the AHP (Analytic Hierarchy Process) method and make a simple analysis about network resources competition in the case of multi-agent scenario. Then we propose two network selection algorithms: SANSA (single agent network selection algorithm) and MANSA (multi-agent network selection algorithm) which are based on Q-Learning and Nash Q-Learning respectively to deal with the network selection problem. Simulations show that our proposed algorithms have a better performance of network load balancing than the contrast scheme. In addition, the MANSA can effectively reduce the system total power consumption.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A Dual-polarized Antennas Based Directional Modulation Scheme Sliding-Window Processing of Turbo Equalization for Partial Response Channels Feature fusion by using LBP, HOG, GIST descriptors and Canonical Correlation Analysis for face recognition Periodic Time Series Data Classification By Deep Neural Network SFDS: A Self-Feedback Detection System for DNS Hijacking Based on Multi-Protocol Cross Validation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1