嵌入式系统快速准确的混合功率估计方法

S. Rethinagiri, R. B. Atitallah, S. Niar, E. Senn, J. Dekeyser
{"title":"嵌入式系统快速准确的混合功率估计方法","authors":"S. Rethinagiri, R. B. Atitallah, S. Niar, E. Senn, J. Dekeyser","doi":"10.1109/DASIP.2011.6136852","DOIUrl":null,"url":null,"abstract":"Nowadays, having the appropriate Electronic System Level (ESL) tools for power estimation in embedded systems is becoming mandatory. The main challenge for the design of such dedicated tools is to achieve a better trade-offs between accuracy and speed. In this paper, a new power consumption estimation methodology for embedded systems is proposed. First, the Functional Level Power Analysis (FLPA) is used to set up generic power models based on real board measurements. In the second step, a simulation framework is developed to evaluate accurately the architectural parameters of the elaborated power models. The proposed methodology has several benefits: it improves significantly the accuracy of the functional level approach and the power consumption estimation can be accomplished without a costly and complex material. In order to speed up the estimation process, our methodology refers to the selection of data pattern size and to the application sampling technique. Experimental results show that our tool achieves high simulation speed of 21 times faster with a marginal power estimation error of 1%.","PeriodicalId":199500,"journal":{"name":"Proceedings of the 2011 Conference on Design & Architectures for Signal & Image Processing (DASIP)","volume":"252 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-11-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":"{\"title\":\"Fast and accurate hybrid power estimation methodology for embedded systems\",\"authors\":\"S. Rethinagiri, R. B. Atitallah, S. Niar, E. Senn, J. Dekeyser\",\"doi\":\"10.1109/DASIP.2011.6136852\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Nowadays, having the appropriate Electronic System Level (ESL) tools for power estimation in embedded systems is becoming mandatory. The main challenge for the design of such dedicated tools is to achieve a better trade-offs between accuracy and speed. In this paper, a new power consumption estimation methodology for embedded systems is proposed. First, the Functional Level Power Analysis (FLPA) is used to set up generic power models based on real board measurements. In the second step, a simulation framework is developed to evaluate accurately the architectural parameters of the elaborated power models. The proposed methodology has several benefits: it improves significantly the accuracy of the functional level approach and the power consumption estimation can be accomplished without a costly and complex material. In order to speed up the estimation process, our methodology refers to the selection of data pattern size and to the application sampling technique. Experimental results show that our tool achieves high simulation speed of 21 times faster with a marginal power estimation error of 1%.\",\"PeriodicalId\":199500,\"journal\":{\"name\":\"Proceedings of the 2011 Conference on Design & Architectures for Signal & Image Processing (DASIP)\",\"volume\":\"252 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2011-11-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"10\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 2011 Conference on Design & Architectures for Signal & Image Processing (DASIP)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/DASIP.2011.6136852\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2011 Conference on Design & Architectures for Signal & Image Processing (DASIP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/DASIP.2011.6136852","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 10

摘要

如今,在嵌入式系统中使用适当的电子系统级(ESL)工具进行功率估计变得越来越必要。设计这种专用工具的主要挑战是在精度和速度之间实现更好的权衡。本文提出了一种新的嵌入式系统功耗估算方法。首先,使用功能级功率分析(FLPA)建立基于实际电路板测量的通用功率模型。在第二步中,开发了一个仿真框架,以准确评估所阐述的功率模型的结构参数。所提出的方法有几个优点:它显著提高了功能级方法的准确性,并且可以在没有昂贵和复杂材料的情况下完成功耗估计。为了加快估计过程,我们的方法参考了数据模式大小的选择和应用程序采样技术。实验结果表明,该工具的仿真速度提高了21倍,边际功率估计误差为1%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Fast and accurate hybrid power estimation methodology for embedded systems
Nowadays, having the appropriate Electronic System Level (ESL) tools for power estimation in embedded systems is becoming mandatory. The main challenge for the design of such dedicated tools is to achieve a better trade-offs between accuracy and speed. In this paper, a new power consumption estimation methodology for embedded systems is proposed. First, the Functional Level Power Analysis (FLPA) is used to set up generic power models based on real board measurements. In the second step, a simulation framework is developed to evaluate accurately the architectural parameters of the elaborated power models. The proposed methodology has several benefits: it improves significantly the accuracy of the functional level approach and the power consumption estimation can be accomplished without a costly and complex material. In order to speed up the estimation process, our methodology refers to the selection of data pattern size and to the application sampling technique. Experimental results show that our tool achieves high simulation speed of 21 times faster with a marginal power estimation error of 1%.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Performance evaluation of an automotive distributed architecture based on HPAV communication protocol using a transaction level modeling approach FPGA dynamic reconfiguration using the RVC technology: Inverse quantization case study Design of a processor optimized for syntax parsing in video decoders A framework for the design of reconfigurable fault tolerant architectures Fast and accurate hybrid power estimation methodology for embedded systems
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1