双峰纳米造影剂的双频超声检测技术

F. Conversano, R. Franchini, P. Pisani, A. Greco, M. Di Paola, S. Casciaro
{"title":"双峰纳米造影剂的双频超声检测技术","authors":"F. Conversano, R. Franchini, P. Pisani, A. Greco, M. Di Paola, S. Casciaro","doi":"10.1109/NANOFIM.2015.8425280","DOIUrl":null,"url":null,"abstract":"Every biomedical imaging technique exploits different physical principles and can provide peculiar information, which is often unachievable with different techniques and can be further enhanced by the employment of suitable contrast agents (CAs). However, each imaging technique typically requires its own specific CAs, with corresponding increments of procedure duration, costs and invasiveness for the patients, who should undergo two injections. In the last years, great effort has been addressed toward the development of multimodal CAs that can be real-time detected by different techniques. In this context, we developed a new type of bimodal nanoparticles (NPs), consisting of silica nanospheres (NSs) covered by an outer shell of smaller superparamagnetic NPs, to be used as dual-mode imaging CAs for ultrasound and magnetic resonance imaging techniques. Aim of the present study was to evaluate the echographic detectability of these bimodal NPs through a recently developed algorithm that was originally implemented to detect pure silica NSs. In particular, we performed a series of “in vitro” experiments on custom-designed tissue- mimicking phantoms, focused on a specific objective of direct clinical interest: the detection of multimodal NPs with a diameter of about 330 nm at a low and biocompatible volume concentration (0.2 %). The obtained results demonstrated the possibility of deleting the US echoes coming from structures other than NPs with high effectiveness, therefore enhancing the brightness of nanosized contrast agents in the final diagnostic images. The effectiveness of the proposed method shows very promising perspectives for future clinical applications.","PeriodicalId":413629,"journal":{"name":"2015 1st Workshop on Nanotechnology in Instrumentation and Measurement (NANOFIM)","volume":"92 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Dual Frequency Ultrasound Technique for the Improved Detection of Bimodal Nanosized Contrast Agents\",\"authors\":\"F. Conversano, R. Franchini, P. Pisani, A. Greco, M. Di Paola, S. Casciaro\",\"doi\":\"10.1109/NANOFIM.2015.8425280\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Every biomedical imaging technique exploits different physical principles and can provide peculiar information, which is often unachievable with different techniques and can be further enhanced by the employment of suitable contrast agents (CAs). However, each imaging technique typically requires its own specific CAs, with corresponding increments of procedure duration, costs and invasiveness for the patients, who should undergo two injections. In the last years, great effort has been addressed toward the development of multimodal CAs that can be real-time detected by different techniques. In this context, we developed a new type of bimodal nanoparticles (NPs), consisting of silica nanospheres (NSs) covered by an outer shell of smaller superparamagnetic NPs, to be used as dual-mode imaging CAs for ultrasound and magnetic resonance imaging techniques. Aim of the present study was to evaluate the echographic detectability of these bimodal NPs through a recently developed algorithm that was originally implemented to detect pure silica NSs. In particular, we performed a series of “in vitro” experiments on custom-designed tissue- mimicking phantoms, focused on a specific objective of direct clinical interest: the detection of multimodal NPs with a diameter of about 330 nm at a low and biocompatible volume concentration (0.2 %). The obtained results demonstrated the possibility of deleting the US echoes coming from structures other than NPs with high effectiveness, therefore enhancing the brightness of nanosized contrast agents in the final diagnostic images. The effectiveness of the proposed method shows very promising perspectives for future clinical applications.\",\"PeriodicalId\":413629,\"journal\":{\"name\":\"2015 1st Workshop on Nanotechnology in Instrumentation and Measurement (NANOFIM)\",\"volume\":\"92 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2015 1st Workshop on Nanotechnology in Instrumentation and Measurement (NANOFIM)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/NANOFIM.2015.8425280\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 1st Workshop on Nanotechnology in Instrumentation and Measurement (NANOFIM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/NANOFIM.2015.8425280","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

每一种生物医学成像技术都利用不同的物理原理,可以提供特殊的信息,这通常是不同技术无法实现的,可以通过使用合适的造影剂(CAs)进一步增强。然而,每种成像技术通常都需要自己特定的ca,相应的增加了手术时间、成本和患者的侵入性,他们应该接受两次注射。在过去的几年里,人们已经为开发可以通过不同技术实时检测的多模态ca付出了巨大的努力。在这种背景下,我们开发了一种新型的双峰纳米颗粒(NPs),由二氧化硅纳米球(NSs)组成,外层覆盖着更小的超顺磁性纳米颗粒,用于超声和磁共振成像技术的双模成像CAs。本研究的目的是通过最近开发的一种算法来评估这些双峰NPs的超声可检测性,该算法最初用于检测纯二氧化硅NSs。特别是,我们在定制设计的组织模拟模型上进行了一系列“体外”实验,重点关注直接临床兴趣的特定目标:在低生物相容性体积浓度(0.2%)下检测直径约330 nm的多模态NPs。所获得的结果表明,可以高效地删除来自NPs以外结构的US回声,从而增强最终诊断图像中纳米造影剂的亮度。该方法的有效性显示了未来临床应用的前景。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A Dual Frequency Ultrasound Technique for the Improved Detection of Bimodal Nanosized Contrast Agents
Every biomedical imaging technique exploits different physical principles and can provide peculiar information, which is often unachievable with different techniques and can be further enhanced by the employment of suitable contrast agents (CAs). However, each imaging technique typically requires its own specific CAs, with corresponding increments of procedure duration, costs and invasiveness for the patients, who should undergo two injections. In the last years, great effort has been addressed toward the development of multimodal CAs that can be real-time detected by different techniques. In this context, we developed a new type of bimodal nanoparticles (NPs), consisting of silica nanospheres (NSs) covered by an outer shell of smaller superparamagnetic NPs, to be used as dual-mode imaging CAs for ultrasound and magnetic resonance imaging techniques. Aim of the present study was to evaluate the echographic detectability of these bimodal NPs through a recently developed algorithm that was originally implemented to detect pure silica NSs. In particular, we performed a series of “in vitro” experiments on custom-designed tissue- mimicking phantoms, focused on a specific objective of direct clinical interest: the detection of multimodal NPs with a diameter of about 330 nm at a low and biocompatible volume concentration (0.2 %). The obtained results demonstrated the possibility of deleting the US echoes coming from structures other than NPs with high effectiveness, therefore enhancing the brightness of nanosized contrast agents in the final diagnostic images. The effectiveness of the proposed method shows very promising perspectives for future clinical applications.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Air/methane mixture ignition with Multi-Walled Carbon Nanotubes (MWCNTs) and comparison with spark ignition Effective Targeting of Hepatocellular Carcinoma through Glypican-3 Ligand Peptide Functionalization of Silica Nanoparticles Exploring CVD techniques for the growth of novel carbon nanostructures Highly Improved Cytocompatibility of Halloysite Nanotubes through Polymeric Surface Modification Carbon Nanotube Polymer Composites for High Performance Strain Sensors
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1