基于行星穿透器与土壤相互作用模拟的非参数地形估计

Xintao Yang, Han Huang, Zhixin Xiang, Qinghao Yan, Haozhe Wang, Shucai Xu
{"title":"基于行星穿透器与土壤相互作用模拟的非参数地形估计","authors":"Xintao Yang, Han Huang, Zhixin Xiang, Qinghao Yan, Haozhe Wang, Shucai Xu","doi":"10.56884/mbem9373","DOIUrl":null,"url":null,"abstract":"Penetration detection is an important way to method for in-situ scientific exploration of planets, which is used to indirectly detect the mechanical properties of the planetary subsurface soil. In this paper, four ovoid-nosed penetrators with different radius penetrating different compactness of planetary soil under different impact velocity were simulated using nonlinear finite element (FE) method through Hypermesh/Ls-dyna. A nonparametric estimation method for estimating the mechanical properties of planetary soil is presented. Three main characteristic parameters in the process of penetrator penetration were adopted in the method, including maximum acceleration am, penetration depth z, and maximum deflection angle θm. Twenty identification parameters for identifying planetary soils properties were derived based on these three characteristic parameters. The terrain consisted of simulant soil classified nonparametrically and artificially defined as three states (low, medium and high compactness) based on different harnesses, and five identification criteria (slack, ideal, partially strict, relatively strict and strict) were put forward. Four superior identification parameters were derived through the analysis of the evaluation indexes (recognition rate, accurate rate and conservative rate) under different identification criteria. and are selected as the optimal identification parameters and verified by simulation test, the accurate success rate and conservative success rate of the final estimation are 58.3% and 91.7%, respectively, which indicated that the nonparametric estimation method in this work can be used to evaluate the mechanical properties of planetary soil effectively.","PeriodicalId":447600,"journal":{"name":"Proceedings of the 11th Asia-Pacific Regional Conference of the ISTVS","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2022-10-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Nonparametric Terrain Estimation Based on the Interaction Simulation Between Planetary Penetrator and Soil\",\"authors\":\"Xintao Yang, Han Huang, Zhixin Xiang, Qinghao Yan, Haozhe Wang, Shucai Xu\",\"doi\":\"10.56884/mbem9373\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Penetration detection is an important way to method for in-situ scientific exploration of planets, which is used to indirectly detect the mechanical properties of the planetary subsurface soil. In this paper, four ovoid-nosed penetrators with different radius penetrating different compactness of planetary soil under different impact velocity were simulated using nonlinear finite element (FE) method through Hypermesh/Ls-dyna. A nonparametric estimation method for estimating the mechanical properties of planetary soil is presented. Three main characteristic parameters in the process of penetrator penetration were adopted in the method, including maximum acceleration am, penetration depth z, and maximum deflection angle θm. Twenty identification parameters for identifying planetary soils properties were derived based on these three characteristic parameters. The terrain consisted of simulant soil classified nonparametrically and artificially defined as three states (low, medium and high compactness) based on different harnesses, and five identification criteria (slack, ideal, partially strict, relatively strict and strict) were put forward. Four superior identification parameters were derived through the analysis of the evaluation indexes (recognition rate, accurate rate and conservative rate) under different identification criteria. and are selected as the optimal identification parameters and verified by simulation test, the accurate success rate and conservative success rate of the final estimation are 58.3% and 91.7%, respectively, which indicated that the nonparametric estimation method in this work can be used to evaluate the mechanical properties of planetary soil effectively.\",\"PeriodicalId\":447600,\"journal\":{\"name\":\"Proceedings of the 11th Asia-Pacific Regional Conference of the ISTVS\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-10-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 11th Asia-Pacific Regional Conference of the ISTVS\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.56884/mbem9373\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 11th Asia-Pacific Regional Conference of the ISTVS","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.56884/mbem9373","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

穿透探测是行星原位科学探测的一种重要方法,用于间接探测行星地下土壤的力学性质。本文通过Hypermesh/Ls-dyna软件,采用非线性有限元方法,模拟了4种不同半径的卵圆头穿甲弹在不同冲击速度下穿透行星土不同密实度的情况。提出了一种估计行星土力学特性的非参数估计方法。该方法采用了最大加速度am、侵彻深度z、最大偏角θm三个侵彻过程主要特征参数。基于这三个特征参数,导出了20个行星土壤特性的识别参数。该地形由非参数分类的模拟土壤组成,并根据不同的压实度人为定义为低、中、高3种状态,提出松弛、理想、部分严格、相对严格和严格5个识别标准。通过对不同识别标准下的评价指标(识别率、正确率和保守率)进行分析,得出4个较优的识别参数。和作为最优识别参数,通过模拟试验验证,最终估计的准确成功率和保守成功率分别为58.3%和91.7%,表明本文的非参数估计方法可以有效地用于评估行星土的力学特性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Nonparametric Terrain Estimation Based on the Interaction Simulation Between Planetary Penetrator and Soil
Penetration detection is an important way to method for in-situ scientific exploration of planets, which is used to indirectly detect the mechanical properties of the planetary subsurface soil. In this paper, four ovoid-nosed penetrators with different radius penetrating different compactness of planetary soil under different impact velocity were simulated using nonlinear finite element (FE) method through Hypermesh/Ls-dyna. A nonparametric estimation method for estimating the mechanical properties of planetary soil is presented. Three main characteristic parameters in the process of penetrator penetration were adopted in the method, including maximum acceleration am, penetration depth z, and maximum deflection angle θm. Twenty identification parameters for identifying planetary soils properties were derived based on these three characteristic parameters. The terrain consisted of simulant soil classified nonparametrically and artificially defined as three states (low, medium and high compactness) based on different harnesses, and five identification criteria (slack, ideal, partially strict, relatively strict and strict) were put forward. Four superior identification parameters were derived through the analysis of the evaluation indexes (recognition rate, accurate rate and conservative rate) under different identification criteria. and are selected as the optimal identification parameters and verified by simulation test, the accurate success rate and conservative success rate of the final estimation are 58.3% and 91.7%, respectively, which indicated that the nonparametric estimation method in this work can be used to evaluate the mechanical properties of planetary soil effectively.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Factors Affecting Bevameter Soil Characterization Vehicle Dynamic Factor Characterized by Actual Velocity and Combined Influence of the Transmission and Driveline System Experimental Study of Track-Soil Interactions of the Steering Performance of Tracked Robots over Soft Deformable Terrains Introducing Polibot: A High Mobility Tracked Robot with Innovative Passive Suspensions Investigation of the Shear Stress Dynamics on Silty Loam Soil and Measurement of Traction-Wheel Slip Relationship of a Tractor Tire
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1