水溶硅酸钠凝胶体系在高非均质储层流体分流和流层隔离中的数值模拟

T. K. Khamees, R. Flori, Sherif Fakher
{"title":"水溶硅酸钠凝胶体系在高非均质储层流体分流和流层隔离中的数值模拟","authors":"T. K. Khamees, R. Flori, Sherif Fakher","doi":"10.2118/191200-MS","DOIUrl":null,"url":null,"abstract":"\n This study presents a numerical modeling of a sodium silicate gel system (inorganic gel) to mitigate the problem of excess water production, which is promoted by high heterogeneity and/or an adverse mobility ratio. A numerical model of six layers was represented by one quarter of five spot pattern with two thief zones. CMG-STARS simulator was used that has the capabilities of modeling different parameters. The gelation process of this gel system was initiated by lowering the gelant's pH, and then the reaction process proceeded, which is dependent on temperature, concentration of the reactant, and other factors. An order of reaction of each component was determined and the stoichiometric coefficients of the reactants and product were specified. The purpose of this study is to develop a thorough understanding of the effects of different important parameters on the polymerization of a sodium silicate gel system.\n This study was started by selecting the optimum gridblock number that represents the model. A sensitivity analysis showed that the fewer the number of gridblocks, the better the performance of the gel system. This model was then selected as a basis for other comparisons. Different scenarios were run and compared. The results showed that the gel system performed better in the injection well compared to the production well. In addition, the treatment was more efficient when performed simultaneously in injection and production wells. Placement technology was among the parameters that affected the success of the treatment; therefore, zonal isolation and dual injection were better than bullhead injection. Lower activator concentration is more preferable for deep placement. Pre-flushing the reservoir to condition the targeted zones for sodium silicate injection was necessary to achieve a higher recovery factor. Moreover, different parameters such as adsorption, mixing sodium silicate with different polymer solutions, effects of temperature and activation energy, effects of shut-in period after the treatment, and effects of reservoir wettability were investigated. The obtained results were valuable, which lead to apply a sodium silicate gel successfully in a heterogeneous reservoir.","PeriodicalId":415543,"journal":{"name":"Day 2 Tue, June 26, 2018","volume":"20 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-06-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Numerical Modeling of Water-Soluble Sodium Silicate Gel System for Fluid Diversion and Flow-Zone Isolation in Highly Heterogeneous Reservoirs\",\"authors\":\"T. K. Khamees, R. Flori, Sherif Fakher\",\"doi\":\"10.2118/191200-MS\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n This study presents a numerical modeling of a sodium silicate gel system (inorganic gel) to mitigate the problem of excess water production, which is promoted by high heterogeneity and/or an adverse mobility ratio. A numerical model of six layers was represented by one quarter of five spot pattern with two thief zones. CMG-STARS simulator was used that has the capabilities of modeling different parameters. The gelation process of this gel system was initiated by lowering the gelant's pH, and then the reaction process proceeded, which is dependent on temperature, concentration of the reactant, and other factors. An order of reaction of each component was determined and the stoichiometric coefficients of the reactants and product were specified. The purpose of this study is to develop a thorough understanding of the effects of different important parameters on the polymerization of a sodium silicate gel system.\\n This study was started by selecting the optimum gridblock number that represents the model. A sensitivity analysis showed that the fewer the number of gridblocks, the better the performance of the gel system. This model was then selected as a basis for other comparisons. Different scenarios were run and compared. The results showed that the gel system performed better in the injection well compared to the production well. In addition, the treatment was more efficient when performed simultaneously in injection and production wells. Placement technology was among the parameters that affected the success of the treatment; therefore, zonal isolation and dual injection were better than bullhead injection. Lower activator concentration is more preferable for deep placement. Pre-flushing the reservoir to condition the targeted zones for sodium silicate injection was necessary to achieve a higher recovery factor. Moreover, different parameters such as adsorption, mixing sodium silicate with different polymer solutions, effects of temperature and activation energy, effects of shut-in period after the treatment, and effects of reservoir wettability were investigated. The obtained results were valuable, which lead to apply a sodium silicate gel successfully in a heterogeneous reservoir.\",\"PeriodicalId\":415543,\"journal\":{\"name\":\"Day 2 Tue, June 26, 2018\",\"volume\":\"20 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-06-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Day 2 Tue, June 26, 2018\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2118/191200-MS\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Day 2 Tue, June 26, 2018","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2118/191200-MS","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

本研究提出了硅酸钠凝胶体系(无机凝胶)的数值模拟,以缓解由高非均质性和/或不利流动比引起的过量产水问题。一个六层的数值模型是由四分之一的五个斑点图案和两个小偷区表示的。采用具有不同参数建模能力的CMG-STARS模拟器。该凝胶体系的凝胶化过程是通过降低胶凝剂的pH值来启动的,然后进行反应过程,这取决于温度、反应物浓度等因素。确定了各组分的反应顺序,确定了反应物和生成物的化学计量系数。本研究的目的是深入了解不同重要参数对水玻璃凝胶体系聚合的影响。本研究从选择代表模型的最优网格块数开始。灵敏度分析表明,网格块数量越少,凝胶体系的性能越好。然后选择该模型作为其他比较的基础。运行并比较了不同的场景。结果表明,与生产井相比,凝胶体系在注水井中的表现更好。此外,在注入井和生产井同时进行时,处理效率更高。放置技术是影响治疗成功的参数之一;因此,层隔和双注优于平头注。较低的活化剂浓度更适合深层放置。为了获得更高的采收率,必须对储层进行预冲洗,以调节目标区域的硅酸钠注入。考察了吸附、水玻璃与不同聚合物溶液的混合、温度和活化能的影响、处理后关井时间的影响以及储层润湿性的影响等参数。所得结果具有一定的参考价值,成功地将水玻璃凝胶应用于非均质油藏。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Numerical Modeling of Water-Soluble Sodium Silicate Gel System for Fluid Diversion and Flow-Zone Isolation in Highly Heterogeneous Reservoirs
This study presents a numerical modeling of a sodium silicate gel system (inorganic gel) to mitigate the problem of excess water production, which is promoted by high heterogeneity and/or an adverse mobility ratio. A numerical model of six layers was represented by one quarter of five spot pattern with two thief zones. CMG-STARS simulator was used that has the capabilities of modeling different parameters. The gelation process of this gel system was initiated by lowering the gelant's pH, and then the reaction process proceeded, which is dependent on temperature, concentration of the reactant, and other factors. An order of reaction of each component was determined and the stoichiometric coefficients of the reactants and product were specified. The purpose of this study is to develop a thorough understanding of the effects of different important parameters on the polymerization of a sodium silicate gel system. This study was started by selecting the optimum gridblock number that represents the model. A sensitivity analysis showed that the fewer the number of gridblocks, the better the performance of the gel system. This model was then selected as a basis for other comparisons. Different scenarios were run and compared. The results showed that the gel system performed better in the injection well compared to the production well. In addition, the treatment was more efficient when performed simultaneously in injection and production wells. Placement technology was among the parameters that affected the success of the treatment; therefore, zonal isolation and dual injection were better than bullhead injection. Lower activator concentration is more preferable for deep placement. Pre-flushing the reservoir to condition the targeted zones for sodium silicate injection was necessary to achieve a higher recovery factor. Moreover, different parameters such as adsorption, mixing sodium silicate with different polymer solutions, effects of temperature and activation energy, effects of shut-in period after the treatment, and effects of reservoir wettability were investigated. The obtained results were valuable, which lead to apply a sodium silicate gel successfully in a heterogeneous reservoir.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Optimization under Uncertainty for Reliable Unconventional Play Evaluation. A Case Study in Vaca Muerta Shale Gas Blocks, Argentina Stability Improvement of CO2 Foam for Enhanced Oil Recovery Applications Using Nanoparticles and Viscoelastic Surfactants Effect of Temperature, Phase Change, and Chemical Additive on Wettability Alteration During Steam Applications in Sands and Carbonates Application of the Capacitance Model in Primary Production Period before IOR Implementation Transient and Boundary Dominated Flow Temperature Analysis under Variable Rate Conditions
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1