E. Casu, W. Vitale, N. Oliva, T. Rosca, A. Biswas, C. Alper, A. Krammer, G. V. Luong, Q. Zhao, S. Mantl, A. Schuler, A. Seabaugh, A. Ionescu
{"title":"混合相变-隧道场效应管(PC-TFET)开关,亚阈值摆幅< 10mV/ 10,体因子低于0.1:数字和模拟基准测试","authors":"E. Casu, W. Vitale, N. Oliva, T. Rosca, A. Biswas, C. Alper, A. Krammer, G. V. Luong, Q. Zhao, S. Mantl, A. Schuler, A. Seabaugh, A. Ionescu","doi":"10.1109/IEDM.2016.7838452","DOIUrl":null,"url":null,"abstract":"In this paper we report the first hybrid Phase-Change — Tunnel FET (PC-TFET) device configurations for achieving a deep sub-thermionic steep subthreshold swing at room temperature and subthreshold power savings. The proposed hybrid device feedbacks the steep transition of Metal-Insulator transition in a VO2 structure into Gate or Source configurations of strained silicon nanowire Tunnel FETs, to achieve a switching with lon/Ioff better that 5.5×106 and with a subthreshold swing of 4.0 mV/dec at 25 °C. We demonstrate that the principle of PC-TFET switching relates to an internal amplification resulting in a sub-unity body factor, m, which is reduced to values below 0.1 for a current range larger than 2–3 decades. We report a full experimental digital and analog benchmarking of the new device and compare it with Tunnel FETs and CMOS. Remarkably, the PC-TFET can achieve analog figures of merit like gm/Id breaking the 40 V−1 limit of MOSFETs. We demonstrate and report the first buffered oscillator cell for neuromorphic computing exploiting the gate configuration of PC-TFET.","PeriodicalId":186544,"journal":{"name":"2016 IEEE International Electron Devices Meeting (IEDM)","volume":"57 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"15","resultStr":"{\"title\":\"Hybrid phase-change — Tunnel FET (PC-TFET) switch with subthreshold swing < 10mV/decade and sub-0.1 body factor: Digital and analog benchmarking\",\"authors\":\"E. Casu, W. Vitale, N. Oliva, T. Rosca, A. Biswas, C. Alper, A. Krammer, G. V. Luong, Q. Zhao, S. Mantl, A. Schuler, A. Seabaugh, A. Ionescu\",\"doi\":\"10.1109/IEDM.2016.7838452\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper we report the first hybrid Phase-Change — Tunnel FET (PC-TFET) device configurations for achieving a deep sub-thermionic steep subthreshold swing at room temperature and subthreshold power savings. The proposed hybrid device feedbacks the steep transition of Metal-Insulator transition in a VO2 structure into Gate or Source configurations of strained silicon nanowire Tunnel FETs, to achieve a switching with lon/Ioff better that 5.5×106 and with a subthreshold swing of 4.0 mV/dec at 25 °C. We demonstrate that the principle of PC-TFET switching relates to an internal amplification resulting in a sub-unity body factor, m, which is reduced to values below 0.1 for a current range larger than 2–3 decades. We report a full experimental digital and analog benchmarking of the new device and compare it with Tunnel FETs and CMOS. Remarkably, the PC-TFET can achieve analog figures of merit like gm/Id breaking the 40 V−1 limit of MOSFETs. We demonstrate and report the first buffered oscillator cell for neuromorphic computing exploiting the gate configuration of PC-TFET.\",\"PeriodicalId\":186544,\"journal\":{\"name\":\"2016 IEEE International Electron Devices Meeting (IEDM)\",\"volume\":\"57 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"15\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 IEEE International Electron Devices Meeting (IEDM)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IEDM.2016.7838452\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE International Electron Devices Meeting (IEDM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IEDM.2016.7838452","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Hybrid phase-change — Tunnel FET (PC-TFET) switch with subthreshold swing < 10mV/decade and sub-0.1 body factor: Digital and analog benchmarking
In this paper we report the first hybrid Phase-Change — Tunnel FET (PC-TFET) device configurations for achieving a deep sub-thermionic steep subthreshold swing at room temperature and subthreshold power savings. The proposed hybrid device feedbacks the steep transition of Metal-Insulator transition in a VO2 structure into Gate or Source configurations of strained silicon nanowire Tunnel FETs, to achieve a switching with lon/Ioff better that 5.5×106 and with a subthreshold swing of 4.0 mV/dec at 25 °C. We demonstrate that the principle of PC-TFET switching relates to an internal amplification resulting in a sub-unity body factor, m, which is reduced to values below 0.1 for a current range larger than 2–3 decades. We report a full experimental digital and analog benchmarking of the new device and compare it with Tunnel FETs and CMOS. Remarkably, the PC-TFET can achieve analog figures of merit like gm/Id breaking the 40 V−1 limit of MOSFETs. We demonstrate and report the first buffered oscillator cell for neuromorphic computing exploiting the gate configuration of PC-TFET.