基于神经网络的图像引导机器人系统力预测与跟踪

Ivan Buzurovic, T. Podder, Yan Yu
{"title":"基于神经网络的图像引导机器人系统力预测与跟踪","authors":"Ivan Buzurovic, T. Podder, Yan Yu","doi":"10.1109/BIOCAS.2008.4696869","DOIUrl":null,"url":null,"abstract":"In contemporary brachytherapy procedure, needle placement at desired location is challenging due to a variety of reasons. We have designed a robot-assisted brachytherapy system to improve needle placement and seed delivery. In this paper, we have used neural network (NN) for predicting insertion force during prostate brachytherapy. The NN controller computes control inputs required for optimizing the robotic system. To verify efficacy of the control system we used in-vivo motion and force measurements during actual brachytherapy needle insertion while radioactive seeds were implanted in the prostate gland, as a real-time controller input signal. Both force prediction and force tracking processes are investigated. Information about insertion force values are used to adjust other insertion parameters like insertion velocity or acceleration in order to minimize the insertion force.","PeriodicalId":415200,"journal":{"name":"2008 IEEE Biomedical Circuits and Systems Conference","volume":"23 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2008-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":"{\"title\":\"Force prediction and tracking for image-guided robotic system using neural network approach\",\"authors\":\"Ivan Buzurovic, T. Podder, Yan Yu\",\"doi\":\"10.1109/BIOCAS.2008.4696869\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In contemporary brachytherapy procedure, needle placement at desired location is challenging due to a variety of reasons. We have designed a robot-assisted brachytherapy system to improve needle placement and seed delivery. In this paper, we have used neural network (NN) for predicting insertion force during prostate brachytherapy. The NN controller computes control inputs required for optimizing the robotic system. To verify efficacy of the control system we used in-vivo motion and force measurements during actual brachytherapy needle insertion while radioactive seeds were implanted in the prostate gland, as a real-time controller input signal. Both force prediction and force tracking processes are investigated. Information about insertion force values are used to adjust other insertion parameters like insertion velocity or acceleration in order to minimize the insertion force.\",\"PeriodicalId\":415200,\"journal\":{\"name\":\"2008 IEEE Biomedical Circuits and Systems Conference\",\"volume\":\"23 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2008-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"10\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2008 IEEE Biomedical Circuits and Systems Conference\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/BIOCAS.2008.4696869\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2008 IEEE Biomedical Circuits and Systems Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/BIOCAS.2008.4696869","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 10

摘要

在当代近距离治疗过程中,由于各种原因,针在理想位置的放置是具有挑战性的。我们设计了一个机器人辅助近距离治疗系统,以改善针头放置和种子输送。在本文中,我们使用神经网络(NN)来预测前列腺近距离治疗中的插入力。神经网络控制器计算优化机器人系统所需的控制输入。为了验证控制系统的有效性,我们在实际的近距离治疗针插入过程中使用了体内运动和力测量,同时将放射性粒子植入前列腺,作为实时控制器输入信号。对力的预测和跟踪过程进行了研究。有关插入力值的信息用于调整插入速度或加速度等其他插入参数,以使插入力最小化。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Force prediction and tracking for image-guided robotic system using neural network approach
In contemporary brachytherapy procedure, needle placement at desired location is challenging due to a variety of reasons. We have designed a robot-assisted brachytherapy system to improve needle placement and seed delivery. In this paper, we have used neural network (NN) for predicting insertion force during prostate brachytherapy. The NN controller computes control inputs required for optimizing the robotic system. To verify efficacy of the control system we used in-vivo motion and force measurements during actual brachytherapy needle insertion while radioactive seeds were implanted in the prostate gland, as a real-time controller input signal. Both force prediction and force tracking processes are investigated. Information about insertion force values are used to adjust other insertion parameters like insertion velocity or acceleration in order to minimize the insertion force.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A wireless neural interface for chronic recording Development of novel SAW devices in CMOS technology for biosensor applications An efficient wireless power link for high voltage retinal implant FPGA implementation of 4-channel ICA for on-line EEG signal separation Pressure detection and wireless interface for patient bed
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1