雾支持物联网网络中延迟最小化的任务调度

Guowei Zhang, Fei Shen, Yueyue Zhang, Rong Yang, Yang Yang, Eduard Axel Jorswieck
{"title":"雾支持物联网网络中延迟最小化的任务调度","authors":"Guowei Zhang, Fei Shen, Yueyue Zhang, Rong Yang, Yang Yang, Eduard Axel Jorswieck","doi":"10.1109/WCSP.2018.8555532","DOIUrl":null,"url":null,"abstract":"Through offloading the computing tasks of the terminal nodes (TNs) to the fog nodes (FNs) located at the network edge, fog computing is expected to address the unacceptable processing delay and heavy link burden existed in current cloud-based Internet of Things (IoT) networks. How to take full use of the computing resources deployed on the FNs is vital to provide high quality offloading services for delay-sensitive TN tasks in fog-enabled IoT networks. In this paper, we construct a general analytical model for the task offloading delay in a fog-enabled IoT network. The optimal solution including the subtask sizes and the TN transmission power are obtained by the proposed Delay-Minimized Task Offloading (DMTO) algorithm that minimizes the task offloading delay. Extensive simulations are carried out in a fog-enabled IoT network, and the numerical results indicate that the proposed algorithm can effectively provide the optimal offloading solutions for the delay-sensitive tasks.","PeriodicalId":423073,"journal":{"name":"2018 10th International Conference on Wireless Communications and Signal Processing (WCSP)","volume":"15 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"14","resultStr":"{\"title\":\"Delay Minimized Task Scheduling in Fog-Enabled IoT Networks\",\"authors\":\"Guowei Zhang, Fei Shen, Yueyue Zhang, Rong Yang, Yang Yang, Eduard Axel Jorswieck\",\"doi\":\"10.1109/WCSP.2018.8555532\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Through offloading the computing tasks of the terminal nodes (TNs) to the fog nodes (FNs) located at the network edge, fog computing is expected to address the unacceptable processing delay and heavy link burden existed in current cloud-based Internet of Things (IoT) networks. How to take full use of the computing resources deployed on the FNs is vital to provide high quality offloading services for delay-sensitive TN tasks in fog-enabled IoT networks. In this paper, we construct a general analytical model for the task offloading delay in a fog-enabled IoT network. The optimal solution including the subtask sizes and the TN transmission power are obtained by the proposed Delay-Minimized Task Offloading (DMTO) algorithm that minimizes the task offloading delay. Extensive simulations are carried out in a fog-enabled IoT network, and the numerical results indicate that the proposed algorithm can effectively provide the optimal offloading solutions for the delay-sensitive tasks.\",\"PeriodicalId\":423073,\"journal\":{\"name\":\"2018 10th International Conference on Wireless Communications and Signal Processing (WCSP)\",\"volume\":\"15 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"14\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 10th International Conference on Wireless Communications and Signal Processing (WCSP)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/WCSP.2018.8555532\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 10th International Conference on Wireless Communications and Signal Processing (WCSP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/WCSP.2018.8555532","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 14

摘要

通过将终端节点(tn)的计算任务卸载到位于网络边缘的雾节点(FNs),雾计算有望解决当前基于云的物联网(IoT)网络中存在的不可接受的处理延迟和沉重的链路负担。如何充分利用部署在FNs上的计算资源,对于在雾化物联网网络中为延迟敏感的TN任务提供高质量的卸载服务至关重要。在本文中,我们构建了一个雾蒙蒙的物联网网络中任务卸载延迟的通用分析模型。提出的DMTO (delay - minimattask Offloading)算法使任务卸载延迟最小化,得到了包括子任务大小和TN传输功率在内的最优解。在有雾的物联网网络中进行了大量的仿真,数值结果表明,该算法可以有效地为延迟敏感任务提供最优卸载方案。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Delay Minimized Task Scheduling in Fog-Enabled IoT Networks
Through offloading the computing tasks of the terminal nodes (TNs) to the fog nodes (FNs) located at the network edge, fog computing is expected to address the unacceptable processing delay and heavy link burden existed in current cloud-based Internet of Things (IoT) networks. How to take full use of the computing resources deployed on the FNs is vital to provide high quality offloading services for delay-sensitive TN tasks in fog-enabled IoT networks. In this paper, we construct a general analytical model for the task offloading delay in a fog-enabled IoT network. The optimal solution including the subtask sizes and the TN transmission power are obtained by the proposed Delay-Minimized Task Offloading (DMTO) algorithm that minimizes the task offloading delay. Extensive simulations are carried out in a fog-enabled IoT network, and the numerical results indicate that the proposed algorithm can effectively provide the optimal offloading solutions for the delay-sensitive tasks.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Energy Depositing for Energy Harvesting Wireless Communications Experimental Demonstration of Acoustic Inversion Using an AUV Carrying Source Channel Tracking for Uniform Rectangular Arrays in mmWave Massive MIMO Systems Rate Matching and Piecewise Sequence Adaptation for Polar Codes with Reed-Solomon Kernels Utility Maximization for MISO Bursty Interference Channels
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1