融合追踪属性时的信念融合、吝啬概率和信息内容

John J. Sudano
{"title":"融合追踪属性时的信念融合、吝啬概率和信息内容","authors":"John J. Sudano","doi":"10.1109/NRC.2004.1316425","DOIUrl":null,"url":null,"abstract":"In the design of information fusion systems, the reduction of computational complexity is a key design parameter for real-time implementations. One way to simplify the computations is to decompose the system into subsystems of noncorrelated informational components, such as a qualitative informational component, a quantitative informational component, and a complement informational component. A probability information content (PIC) variable assigns an information content value to any set of system or sub-system probability distributions. The PIC variable is the normalized entropy computed from the probability distribution. This article derives a PIC variable for a subsystem represented by the complement probabilities. This article also derives a relationship between the PIC variable of sub-system components and the system informational PIC variable. A series of pignistic probability transforms are presented that estimate the probability for any belief data set. The generalized belief fusion method of combining independent multi-source beliefs is presented.","PeriodicalId":268965,"journal":{"name":"Proceedings of the 2004 IEEE Radar Conference (IEEE Cat. No.04CH37509)","volume":"1975 7‐8","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2004-04-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":"{\"title\":\"Belief fusion, pignistic probabilities, and information content in fusing tracking attributes\",\"authors\":\"John J. Sudano\",\"doi\":\"10.1109/NRC.2004.1316425\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In the design of information fusion systems, the reduction of computational complexity is a key design parameter for real-time implementations. One way to simplify the computations is to decompose the system into subsystems of noncorrelated informational components, such as a qualitative informational component, a quantitative informational component, and a complement informational component. A probability information content (PIC) variable assigns an information content value to any set of system or sub-system probability distributions. The PIC variable is the normalized entropy computed from the probability distribution. This article derives a PIC variable for a subsystem represented by the complement probabilities. This article also derives a relationship between the PIC variable of sub-system components and the system informational PIC variable. A series of pignistic probability transforms are presented that estimate the probability for any belief data set. The generalized belief fusion method of combining independent multi-source beliefs is presented.\",\"PeriodicalId\":268965,\"journal\":{\"name\":\"Proceedings of the 2004 IEEE Radar Conference (IEEE Cat. No.04CH37509)\",\"volume\":\"1975 7‐8\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2004-04-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"10\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 2004 IEEE Radar Conference (IEEE Cat. No.04CH37509)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/NRC.2004.1316425\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2004 IEEE Radar Conference (IEEE Cat. No.04CH37509)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/NRC.2004.1316425","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 10

摘要

在信息融合系统的设计中,降低计算复杂度是实时实施的一个关键设计参数。简化计算的一种方法是将系统分解为非相关信息成分的子系统,如定性信息成分、定量信息成分和补充信息成分。概率信息含量(PIC)变量为任意一组系统或子系统概率分布赋予一个信息含量值。PIC 变量是根据概率分布计算出的归一化熵。本文推导了由补码概率代表的子系统的 PIC 变量。本文还推导了子系统组件的 PIC 变量与系统信息 PIC 变量之间的关系。本文提出了一系列估计任何信念数据集概率的信念概率变换。介绍了结合独立多源信念的广义信念融合方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Belief fusion, pignistic probabilities, and information content in fusing tracking attributes
In the design of information fusion systems, the reduction of computational complexity is a key design parameter for real-time implementations. One way to simplify the computations is to decompose the system into subsystems of noncorrelated informational components, such as a qualitative informational component, a quantitative informational component, and a complement informational component. A probability information content (PIC) variable assigns an information content value to any set of system or sub-system probability distributions. The PIC variable is the normalized entropy computed from the probability distribution. This article derives a PIC variable for a subsystem represented by the complement probabilities. This article also derives a relationship between the PIC variable of sub-system components and the system informational PIC variable. A series of pignistic probability transforms are presented that estimate the probability for any belief data set. The generalized belief fusion method of combining independent multi-source beliefs is presented.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Advanced geostationary radar for hurricane monitoring and studies Effect of system geometry of multi-sensor on accuracy of target position estimation Crossbeam wind measurements with phased array Doppler weather radar: theory Physics-based airborne GMTI radar signal processing Optimal invariant test in coherent radar detection with unknown parameters
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1