从视网膜图像中自动分割血管系统

V. Gupta, Namita Sengar, M. Dutta
{"title":"从视网膜图像中自动分割血管系统","authors":"V. Gupta, Namita Sengar, M. Dutta","doi":"10.1109/CCINTELS.2016.7878205","DOIUrl":null,"url":null,"abstract":"In this paper an algorithm is proposed for blood vessel extraction from an eye's fundus image. Blood vessels removal and detection is an important step to find features or abnormalities like red lesions, optic nerve and fovea used for retinal health diagnosis. The proposed method uses a strategic combination of green and L channel to develop the final vessel structure which increases the accuracy. A combination of morphological operators and intensity based thresholding are used which creates a method which is computationally efficient and less complex. A set of public DRIVE data of fundus image of an eye is used to test the proposed algorithm. The results show a better comprehensive performance of vessel extraction and computationally efficient method.","PeriodicalId":158982,"journal":{"name":"2016 2nd International Conference on Communication Control and Intelligent Systems (CCIS)","volume":"30 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Automated segmentation of blood vasculature from retinal images\",\"authors\":\"V. Gupta, Namita Sengar, M. Dutta\",\"doi\":\"10.1109/CCINTELS.2016.7878205\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper an algorithm is proposed for blood vessel extraction from an eye's fundus image. Blood vessels removal and detection is an important step to find features or abnormalities like red lesions, optic nerve and fovea used for retinal health diagnosis. The proposed method uses a strategic combination of green and L channel to develop the final vessel structure which increases the accuracy. A combination of morphological operators and intensity based thresholding are used which creates a method which is computationally efficient and less complex. A set of public DRIVE data of fundus image of an eye is used to test the proposed algorithm. The results show a better comprehensive performance of vessel extraction and computationally efficient method.\",\"PeriodicalId\":158982,\"journal\":{\"name\":\"2016 2nd International Conference on Communication Control and Intelligent Systems (CCIS)\",\"volume\":\"30 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 2nd International Conference on Communication Control and Intelligent Systems (CCIS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CCINTELS.2016.7878205\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 2nd International Conference on Communication Control and Intelligent Systems (CCIS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CCINTELS.2016.7878205","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

提出了一种从眼底图像中提取血管的算法。血管的切除和检测是发现红色病变、视神经和中央凹等特征或异常的重要步骤,用于视网膜健康诊断。该方法采用绿色通道和L通道的策略组合来开发最终的容器结构,提高了精度。形态学算子和基于强度的阈值分割相结合,创建了一种计算效率高且不太复杂的方法。利用一组公开的眼底图像DRIVE数据对该算法进行了验证。结果表明,该方法具有较好的综合性能和计算效率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Automated segmentation of blood vasculature from retinal images
In this paper an algorithm is proposed for blood vessel extraction from an eye's fundus image. Blood vessels removal and detection is an important step to find features or abnormalities like red lesions, optic nerve and fovea used for retinal health diagnosis. The proposed method uses a strategic combination of green and L channel to develop the final vessel structure which increases the accuracy. A combination of morphological operators and intensity based thresholding are used which creates a method which is computationally efficient and less complex. A set of public DRIVE data of fundus image of an eye is used to test the proposed algorithm. The results show a better comprehensive performance of vessel extraction and computationally efficient method.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
60 Gbps transmission with reduced power and lower frequency in lightwave systems using negative dispersion optical fiber Design, fabrication and evaluation of low density, broadband microwave absorbing composite for X & Ku band Biometric personal identification system using biomedical sensors Automatic age detection based on facial images A 40 nm CMOS V-band VCO with on-chip body bias voltage control technique
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1