基于距离矩阵的特征可分性

Y. Zhu, Jinqiu Sun, Min Wang, Rui Yao, Yanning Zhang
{"title":"基于距离矩阵的特征可分性","authors":"Y. Zhu, Jinqiu Sun, Min Wang, Rui Yao, Yanning Zhang","doi":"10.1109/ICOT.2017.8336087","DOIUrl":null,"url":null,"abstract":"Feature extraction is a key step in the classification and recognition problem. Features from different methods vary a lot with different separability in their feature space. We propose a novel method based on the distance matrix to evaluate feature separability by describing the in-class aggregation and the between-class scatter of every class. Finally the separability of each feature class is measured individually. Experiments on the synthetic data and ORL face dataset prove its effectiveness and advantage with regard to the conventional methods.","PeriodicalId":297245,"journal":{"name":"2017 International Conference on Orange Technologies (ICOT)","volume":"209 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Feature separability based on the distance matrix\",\"authors\":\"Y. Zhu, Jinqiu Sun, Min Wang, Rui Yao, Yanning Zhang\",\"doi\":\"10.1109/ICOT.2017.8336087\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Feature extraction is a key step in the classification and recognition problem. Features from different methods vary a lot with different separability in their feature space. We propose a novel method based on the distance matrix to evaluate feature separability by describing the in-class aggregation and the between-class scatter of every class. Finally the separability of each feature class is measured individually. Experiments on the synthetic data and ORL face dataset prove its effectiveness and advantage with regard to the conventional methods.\",\"PeriodicalId\":297245,\"journal\":{\"name\":\"2017 International Conference on Orange Technologies (ICOT)\",\"volume\":\"209 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 International Conference on Orange Technologies (ICOT)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICOT.2017.8336087\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 International Conference on Orange Technologies (ICOT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICOT.2017.8336087","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

特征提取是分类识别的关键步骤。不同方法的特征差异很大,特征空间的可分性也不同。本文提出了一种基于距离矩阵的特征可分性评价方法,通过描述每一类的类内聚集和类间散点来评价特征可分性。最后对每个特征类的可分离性进行了单独度量。在合成数据和ORL人脸数据集上的实验证明了该方法相对于传统方法的有效性和优越性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Feature separability based on the distance matrix
Feature extraction is a key step in the classification and recognition problem. Features from different methods vary a lot with different separability in their feature space. We propose a novel method based on the distance matrix to evaluate feature separability by describing the in-class aggregation and the between-class scatter of every class. Finally the separability of each feature class is measured individually. Experiments on the synthetic data and ORL face dataset prove its effectiveness and advantage with regard to the conventional methods.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Cloud-based Automatic Speech Recognition systems for Southeast Asian Languages A survey of deep learning for polyphonic sound event detection The importance of at-home telemonitoring of vital signs for patients with chronic conditions Analysis of the compliance with the measurement protocols scheduled in a telemonitoring system Fiber optic plasmon resonance sensor for recording action potential; A theoretically evaluated proposal
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1