基于哈密顿神经网络的机器故障分类

Jer-Sheng Shen, Jawad Chowdhury, Sourav Banerjee, G. Terejanu
{"title":"基于哈密顿神经网络的机器故障分类","authors":"Jer-Sheng Shen, Jawad Chowdhury, Sourav Banerjee, G. Terejanu","doi":"10.48550/arXiv.2301.02243","DOIUrl":null,"url":null,"abstract":"A new approach is introduced to classify faults in rotating machinery based on the total energy signature estimated from sensor measurements. The overall goal is to go beyond using black-box models and incorporate additional physical constraints that govern the behavior of mechanical systems. Observational data is used to train Hamiltonian neural networks that describe the conserved energy of the system for normal and various abnormal regimes. The estimated total energy function, in the form of the weights of the Hamiltonian neural network, serves as the new feature vector to discriminate between the faults using off-the-shelf classification models. The experimental results are obtained using the MaFaulDa database, where the proposed model yields a promising area under the curve (AUC) of $0.78$ for the binary classification (normal vs abnormal) and $0.84$ for the multi-class problem (normal, and $5$ different abnormal regimes).","PeriodicalId":410036,"journal":{"name":"International Conference on Pattern Recognition Applications and Methods","volume":"87 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-01-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Machine Fault Classification using Hamiltonian Neural Networks\",\"authors\":\"Jer-Sheng Shen, Jawad Chowdhury, Sourav Banerjee, G. Terejanu\",\"doi\":\"10.48550/arXiv.2301.02243\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A new approach is introduced to classify faults in rotating machinery based on the total energy signature estimated from sensor measurements. The overall goal is to go beyond using black-box models and incorporate additional physical constraints that govern the behavior of mechanical systems. Observational data is used to train Hamiltonian neural networks that describe the conserved energy of the system for normal and various abnormal regimes. The estimated total energy function, in the form of the weights of the Hamiltonian neural network, serves as the new feature vector to discriminate between the faults using off-the-shelf classification models. The experimental results are obtained using the MaFaulDa database, where the proposed model yields a promising area under the curve (AUC) of $0.78$ for the binary classification (normal vs abnormal) and $0.84$ for the multi-class problem (normal, and $5$ different abnormal regimes).\",\"PeriodicalId\":410036,\"journal\":{\"name\":\"International Conference on Pattern Recognition Applications and Methods\",\"volume\":\"87 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-01-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Conference on Pattern Recognition Applications and Methods\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.48550/arXiv.2301.02243\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Conference on Pattern Recognition Applications and Methods","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.48550/arXiv.2301.02243","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

提出了一种基于传感器测量估计的总能量特征对旋转机械故障进行分类的新方法。总体目标是超越使用黑盒模型,并结合额外的物理约束来控制机械系统的行为。观测数据用于训练描述系统在正常和各种异常状态下的守恒能量的哈密顿神经网络。估计的总能量函数以哈密顿神经网络的权重形式作为新的特征向量,使用现成的分类模型来区分故障。实验结果是使用maaulda数据库获得的,其中所提出的模型在二元分类(正常与异常)和多类问题(正常和不同异常制度)中产生了一个有希望的曲线下面积(AUC)为0.78美元和0.84美元。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Machine Fault Classification using Hamiltonian Neural Networks
A new approach is introduced to classify faults in rotating machinery based on the total energy signature estimated from sensor measurements. The overall goal is to go beyond using black-box models and incorporate additional physical constraints that govern the behavior of mechanical systems. Observational data is used to train Hamiltonian neural networks that describe the conserved energy of the system for normal and various abnormal regimes. The estimated total energy function, in the form of the weights of the Hamiltonian neural network, serves as the new feature vector to discriminate between the faults using off-the-shelf classification models. The experimental results are obtained using the MaFaulDa database, where the proposed model yields a promising area under the curve (AUC) of $0.78$ for the binary classification (normal vs abnormal) and $0.84$ for the multi-class problem (normal, and $5$ different abnormal regimes).
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
PatchSVD: A Non-Uniform SVD-Based Image Compression Algorithm On Spectrogram Analysis in a Multiple Classifier Fusion Framework for Power Grid Classification Using Electric Network Frequency Semantic Properties of cosine based bias scores for word embeddings Double Trouble? Impact and Detection of Duplicates in Face Image Datasets Detecting Brain Tumors through Multimodal Neural Networks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1