基于贝叶斯的微博用户标签预测

Guoqiang Gao, Ruixuan Li
{"title":"基于贝叶斯的微博用户标签预测","authors":"Guoqiang Gao, Ruixuan Li","doi":"10.1109/WISA.2017.14","DOIUrl":null,"url":null,"abstract":"In the social network, to users, the tag is an important basis to mark and classify the resource. The tag of microblogging users can be used for advertising and network marketing. This paper presents a method based on naive Bayesian to predict the user tag. We use the user's basic attributes and some popular public tags as the features in Bayesian to predict whether a public tag belongs to a user. The experimental results show that the proposed method can achieve 87% accuracy.","PeriodicalId":204706,"journal":{"name":"2017 14th Web Information Systems and Applications Conference (WISA)","volume":"614 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Microblogging User Tag Prediction Based on Bayesian\",\"authors\":\"Guoqiang Gao, Ruixuan Li\",\"doi\":\"10.1109/WISA.2017.14\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In the social network, to users, the tag is an important basis to mark and classify the resource. The tag of microblogging users can be used for advertising and network marketing. This paper presents a method based on naive Bayesian to predict the user tag. We use the user's basic attributes and some popular public tags as the features in Bayesian to predict whether a public tag belongs to a user. The experimental results show that the proposed method can achieve 87% accuracy.\",\"PeriodicalId\":204706,\"journal\":{\"name\":\"2017 14th Web Information Systems and Applications Conference (WISA)\",\"volume\":\"614 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 14th Web Information Systems and Applications Conference (WISA)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/WISA.2017.14\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 14th Web Information Systems and Applications Conference (WISA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/WISA.2017.14","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在社交网络中,对于用户来说,标签是对资源进行标记和分类的重要依据。微博用户的标签可以用于广告和网络营销。提出了一种基于朴素贝叶斯的用户标签预测方法。我们使用用户的基本属性和一些流行的公共标签作为贝叶斯中的特征来预测公共标签是否属于用户。实验结果表明,该方法的准确率达到87%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Microblogging User Tag Prediction Based on Bayesian
In the social network, to users, the tag is an important basis to mark and classify the resource. The tag of microblogging users can be used for advertising and network marketing. This paper presents a method based on naive Bayesian to predict the user tag. We use the user's basic attributes and some popular public tags as the features in Bayesian to predict whether a public tag belongs to a user. The experimental results show that the proposed method can achieve 87% accuracy.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Efficient Time Series Classification via Sparse Linear Combination Checking the Statutes in Chinese Judgment Document Based on Editing Distance Algorithm Information Extraction from Chinese Judgment Documents Topic Classification Based on Improved Word Embedding Keyword Extraction for Social Media Short Text
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1