dRMSD计算的加速和GPU缓存的有效使用

J. Filipovič, Jan Plhak, D. Střelák
{"title":"dRMSD计算的加速和GPU缓存的有效使用","authors":"J. Filipovič, Jan Plhak, D. Střelák","doi":"10.1109/HPCSim.2015.7237020","DOIUrl":null,"url":null,"abstract":"In this paper, we introduce the GPU acceleration of dRMSD algorithm, used to compare different structures of a molecule. Comparing to multithreaded CPU implementation, we have reached 13.4× speedup in clustering and 62.7× speedup in I:I dRMSD computation using mid-end GPU. The dRMSD computation exposes strong memory locality and thus is compute-bound. Along with conservative implementation using shared memory, we have decided to implement variants of the algorithm using GPU caches to maintain memory locality. Our implementation using cache reaches 96.5% and 91.6% of shared memory performance on Fermi and Maxwell, respectively. We have identified several performance pitfalls related to cache blocking in compute-bound codes and suggested optimization techniques to improve the performance.","PeriodicalId":134009,"journal":{"name":"2015 International Conference on High Performance Computing & Simulation (HPCS)","volume":"103 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-07-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Acceleration of dRMSD calculation and efficient usage of GPU caches\",\"authors\":\"J. Filipovič, Jan Plhak, D. Střelák\",\"doi\":\"10.1109/HPCSim.2015.7237020\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we introduce the GPU acceleration of dRMSD algorithm, used to compare different structures of a molecule. Comparing to multithreaded CPU implementation, we have reached 13.4× speedup in clustering and 62.7× speedup in I:I dRMSD computation using mid-end GPU. The dRMSD computation exposes strong memory locality and thus is compute-bound. Along with conservative implementation using shared memory, we have decided to implement variants of the algorithm using GPU caches to maintain memory locality. Our implementation using cache reaches 96.5% and 91.6% of shared memory performance on Fermi and Maxwell, respectively. We have identified several performance pitfalls related to cache blocking in compute-bound codes and suggested optimization techniques to improve the performance.\",\"PeriodicalId\":134009,\"journal\":{\"name\":\"2015 International Conference on High Performance Computing & Simulation (HPCS)\",\"volume\":\"103 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-07-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2015 International Conference on High Performance Computing & Simulation (HPCS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/HPCSim.2015.7237020\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 International Conference on High Performance Computing & Simulation (HPCS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/HPCSim.2015.7237020","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文介绍了dRMSD算法的GPU加速,用于比较分子的不同结构。与多线程CPU实现相比,使用中端GPU,我们在集群方面的加速达到13.4倍,在I:I dRMSD计算方面的加速达到62.7倍。dRMSD计算暴露了强内存局部性,因此受计算约束。除了使用共享内存的保守实现外,我们还决定使用GPU缓存来实现算法的变体,以维护内存局部性。我们使用缓存的实现在Fermi和Maxwell上分别达到96.5%和91.6%的共享内存性能。我们已经确定了与计算绑定代码中的缓存阻塞相关的几个性能缺陷,并提出了改进性能的优化技术。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Acceleration of dRMSD calculation and efficient usage of GPU caches
In this paper, we introduce the GPU acceleration of dRMSD algorithm, used to compare different structures of a molecule. Comparing to multithreaded CPU implementation, we have reached 13.4× speedup in clustering and 62.7× speedup in I:I dRMSD computation using mid-end GPU. The dRMSD computation exposes strong memory locality and thus is compute-bound. Along with conservative implementation using shared memory, we have decided to implement variants of the algorithm using GPU caches to maintain memory locality. Our implementation using cache reaches 96.5% and 91.6% of shared memory performance on Fermi and Maxwell, respectively. We have identified several performance pitfalls related to cache blocking in compute-bound codes and suggested optimization techniques to improve the performance.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Transient performance evaluation of cloud computing applications and dynamic resource control in large-scale distributed systems A security framework for population-scale genomics analysis Deep learning with shallow architecture for image classification A new reality requiers new ecosystems Investigation of DVFS based dynamic reliability management for chip multiprocessors
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1