大数据可靠性的机遇与挑战

Mdarbi Fatima Ezzahra, Afifi Nadia, Hilal Imane
{"title":"大数据可靠性的机遇与挑战","authors":"Mdarbi Fatima Ezzahra, Afifi Nadia, Hilal Imane","doi":"10.1109/ICSSD47982.2019.9002676","DOIUrl":null,"url":null,"abstract":"Big Data is a very large data set, its analysis exceeds the capabilities of traditional database management systems. Big Data is linked to the need for large computing and storage capacity.Big Data dependability is one of the major concerns of organizations. It reflects the confidence that can be placed in these data. Nowadays, companies find a major interest in Big Data, but dependability challenge remains a major obstacle.In this article, we present different works that have addressed Big Data dependability aspects. This study highlights new opportunities in this field as well as different challenges.","PeriodicalId":342806,"journal":{"name":"2019 1st International Conference on Smart Systems and Data Science (ICSSD)","volume":"5 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Big Data Dependability Opportunities & Challenges\",\"authors\":\"Mdarbi Fatima Ezzahra, Afifi Nadia, Hilal Imane\",\"doi\":\"10.1109/ICSSD47982.2019.9002676\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Big Data is a very large data set, its analysis exceeds the capabilities of traditional database management systems. Big Data is linked to the need for large computing and storage capacity.Big Data dependability is one of the major concerns of organizations. It reflects the confidence that can be placed in these data. Nowadays, companies find a major interest in Big Data, but dependability challenge remains a major obstacle.In this article, we present different works that have addressed Big Data dependability aspects. This study highlights new opportunities in this field as well as different challenges.\",\"PeriodicalId\":342806,\"journal\":{\"name\":\"2019 1st International Conference on Smart Systems and Data Science (ICSSD)\",\"volume\":\"5 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 1st International Conference on Smart Systems and Data Science (ICSSD)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICSSD47982.2019.9002676\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 1st International Conference on Smart Systems and Data Science (ICSSD)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICSSD47982.2019.9002676","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

大数据是一个非常庞大的数据集,其分析能力超出了传统数据库管理系统的能力。大数据与对大型计算和存储容量的需求有关。大数据的可靠性是组织的主要关注点之一。它反映了对这些数据的信心。如今,企业对大数据非常感兴趣,但可靠性挑战仍然是一个主要障碍。在本文中,我们介绍了解决大数据可靠性方面的不同工作。这项研究突出了该领域的新机遇以及不同的挑战。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Big Data Dependability Opportunities & Challenges
Big Data is a very large data set, its analysis exceeds the capabilities of traditional database management systems. Big Data is linked to the need for large computing and storage capacity.Big Data dependability is one of the major concerns of organizations. It reflects the confidence that can be placed in these data. Nowadays, companies find a major interest in Big Data, but dependability challenge remains a major obstacle.In this article, we present different works that have addressed Big Data dependability aspects. This study highlights new opportunities in this field as well as different challenges.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Determination of Merchant Ships that Most Likely to be Autonomously Operated Adaptation of Classical Machine Learning Algorithms to Big Data Context: Problems and Challenges : Case Study: Hidden Markov Models Under Spark Predictive Process Monitoring related to the remaining time dimension: a value-driven framework Decomposition and Visualization of High-Dimensional Data in a Two Dimensional Interface Black SDN for WSN
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1