{"title":"不同损失函数下ЭРланга分布参数的极大极小估计","authors":"Lanping Li","doi":"10.11648/J.SJAMS.20160405.16","DOIUrl":null,"url":null,"abstract":"The aim of this article is to study the estimation of the parameter of ЭРланга distribution based on complete samples. The Bayes estimators of the parameter of ЭРланга distribution are obtained under three different loss functions, namely, weighted square error loss, squared log error loss and entropy loss functions by using conjugate prior inverse Gamma distribution. Then the minimax estimators of the parameter are derived by using Lehmann’s theorem. Finally, performances of these estimators are compared in terms of risks which obtained under squared error loss function.","PeriodicalId":422938,"journal":{"name":"Science Journal of Applied Mathematics and Statistics","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-10-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":"{\"title\":\"Minimax Estimation of the Parameter of ЭРланга Distribution Under Different Loss Functions\",\"authors\":\"Lanping Li\",\"doi\":\"10.11648/J.SJAMS.20160405.16\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The aim of this article is to study the estimation of the parameter of ЭРланга distribution based on complete samples. The Bayes estimators of the parameter of ЭРланга distribution are obtained under three different loss functions, namely, weighted square error loss, squared log error loss and entropy loss functions by using conjugate prior inverse Gamma distribution. Then the minimax estimators of the parameter are derived by using Lehmann’s theorem. Finally, performances of these estimators are compared in terms of risks which obtained under squared error loss function.\",\"PeriodicalId\":422938,\"journal\":{\"name\":\"Science Journal of Applied Mathematics and Statistics\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-10-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Science Journal of Applied Mathematics and Statistics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.11648/J.SJAMS.20160405.16\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Science Journal of Applied Mathematics and Statistics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.11648/J.SJAMS.20160405.16","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Minimax Estimation of the Parameter of ЭРланга Distribution Under Different Loss Functions
The aim of this article is to study the estimation of the parameter of ЭРланга distribution based on complete samples. The Bayes estimators of the parameter of ЭРланга distribution are obtained under three different loss functions, namely, weighted square error loss, squared log error loss and entropy loss functions by using conjugate prior inverse Gamma distribution. Then the minimax estimators of the parameter are derived by using Lehmann’s theorem. Finally, performances of these estimators are compared in terms of risks which obtained under squared error loss function.