基于风险和发病率的可穿戴医疗计算设备心房颤动检测方案

R. Bouhenguel, I. Mahgoub
{"title":"基于风险和发病率的可穿戴医疗计算设备心房颤动检测方案","authors":"R. Bouhenguel, I. Mahgoub","doi":"10.4108/ICST.PERVASIVEHEALTH.2012.248670","DOIUrl":null,"url":null,"abstract":"Today small, battery-operated electrocardiograph devices, known as Ambulatory Event Monitors, are used to monitor the heart's rhythm and activity. These on-body healthcare devices typically require a long battery life and moreover efficient detection algorithms. They need the ability to automatically assess atrial fibrillation (A-Fib) risk, and detect the onset of A-Fib from EKG recordings for further clinical diagnosis and treatment. The focus of this paper is the design of a real-time early detection algorithm cascaded with an A-Fib risk assessment algorithm. We compare accuracy of machine learning schemes such as J48, Naïve Bayes, and Logistic Regression and choose the best algorithm to classify A-Fib from EKG medical data. Though all three algorithms have similar accuracy, the Logistic Regression model is selected for its easy portability to mobile devices. A-Fib risk factor is used to determine a monitoring schedule where the detection algorithm is triggered by the age dependent A-Fib incidence rate inside a circadian prevalence window. The design may provide a great public health benefit by predicting A-Fib risk and detecting A-Fib in order to prevent strokes and heart attacks. It also shows promising results in helping meet the needs for energy efficient real-time A-Fib monitoring, detecting and reporting.","PeriodicalId":119950,"journal":{"name":"2012 6th International Conference on Pervasive Computing Technologies for Healthcare (PervasiveHealth) and Workshops","volume":"106 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-05-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":"{\"title\":\"A risk and Incidence Based Atrial Fibrillation Detection Scheme for wearable healthcare computing devices\",\"authors\":\"R. Bouhenguel, I. Mahgoub\",\"doi\":\"10.4108/ICST.PERVASIVEHEALTH.2012.248670\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Today small, battery-operated electrocardiograph devices, known as Ambulatory Event Monitors, are used to monitor the heart's rhythm and activity. These on-body healthcare devices typically require a long battery life and moreover efficient detection algorithms. They need the ability to automatically assess atrial fibrillation (A-Fib) risk, and detect the onset of A-Fib from EKG recordings for further clinical diagnosis and treatment. The focus of this paper is the design of a real-time early detection algorithm cascaded with an A-Fib risk assessment algorithm. We compare accuracy of machine learning schemes such as J48, Naïve Bayes, and Logistic Regression and choose the best algorithm to classify A-Fib from EKG medical data. Though all three algorithms have similar accuracy, the Logistic Regression model is selected for its easy portability to mobile devices. A-Fib risk factor is used to determine a monitoring schedule where the detection algorithm is triggered by the age dependent A-Fib incidence rate inside a circadian prevalence window. The design may provide a great public health benefit by predicting A-Fib risk and detecting A-Fib in order to prevent strokes and heart attacks. It also shows promising results in helping meet the needs for energy efficient real-time A-Fib monitoring, detecting and reporting.\",\"PeriodicalId\":119950,\"journal\":{\"name\":\"2012 6th International Conference on Pervasive Computing Technologies for Healthcare (PervasiveHealth) and Workshops\",\"volume\":\"106 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-05-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"10\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2012 6th International Conference on Pervasive Computing Technologies for Healthcare (PervasiveHealth) and Workshops\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4108/ICST.PERVASIVEHEALTH.2012.248670\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 6th International Conference on Pervasive Computing Technologies for Healthcare (PervasiveHealth) and Workshops","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4108/ICST.PERVASIVEHEALTH.2012.248670","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 10

摘要

如今,小型的、由电池驱动的心电图设备,被称为动态事件监测器,被用来监测心脏的节奏和活动。这些身体上的医疗设备通常需要很长的电池寿命和更高效的检测算法。他们需要能够自动评估心房颤动(A-Fib)的风险,并从心电图记录中检测心房颤动的发作,以便进一步的临床诊断和治疗。本文的重点是设计一种与心房纤颤风险评估算法级联的实时早期检测算法。我们比较了J48、Naïve贝叶斯和Logistic回归等机器学习方案的准确性,并选择了从心电图医疗数据中分类心房纤颤的最佳算法。虽然这三种算法具有相似的准确性,但选择逻辑回归模型是因为它易于移植到移动设备。心房纤颤危险因素用于确定监测计划,其中检测算法由昼夜流行窗口内的年龄依赖性心房纤颤发病率触发。该设计可以通过预测心房纤颤风险和检测心房纤颤来预防中风和心脏病发作,从而为公众健康提供巨大的好处。它在帮助满足节能实时心房纤颤监测、检测和报告需求方面也显示出有希望的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A risk and Incidence Based Atrial Fibrillation Detection Scheme for wearable healthcare computing devices
Today small, battery-operated electrocardiograph devices, known as Ambulatory Event Monitors, are used to monitor the heart's rhythm and activity. These on-body healthcare devices typically require a long battery life and moreover efficient detection algorithms. They need the ability to automatically assess atrial fibrillation (A-Fib) risk, and detect the onset of A-Fib from EKG recordings for further clinical diagnosis and treatment. The focus of this paper is the design of a real-time early detection algorithm cascaded with an A-Fib risk assessment algorithm. We compare accuracy of machine learning schemes such as J48, Naïve Bayes, and Logistic Regression and choose the best algorithm to classify A-Fib from EKG medical data. Though all three algorithms have similar accuracy, the Logistic Regression model is selected for its easy portability to mobile devices. A-Fib risk factor is used to determine a monitoring schedule where the detection algorithm is triggered by the age dependent A-Fib incidence rate inside a circadian prevalence window. The design may provide a great public health benefit by predicting A-Fib risk and detecting A-Fib in order to prevent strokes and heart attacks. It also shows promising results in helping meet the needs for energy efficient real-time A-Fib monitoring, detecting and reporting.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Using participatory design to determine the needs of informal caregivers for smart home user interfaces Towards pervasive physical rehabilitation using Microsoft Kinect ohmage: An open mobile system for activity and experience sampling Balancing caregiver and clinician needs in a mobile health informatics tool for preterm infants Designing a mobile health tool for preterm infant wellness
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1