Javier Laplaza, A. Garrell, F. Moreno-Noguer, A. Sanfeliu
{"title":"三维人体运动预测的语境和意图:切换任务的实验和用户研究","authors":"Javier Laplaza, A. Garrell, F. Moreno-Noguer, A. Sanfeliu","doi":"10.1109/RO-MAN53752.2022.9900743","DOIUrl":null,"url":null,"abstract":"In this work we present a novel attention deep learning model that uses context and human intention for 3D human body motion prediction in handover human-robot tasks. This model uses a multi-head attention architecture which incorporates as inputs the human motion, the robot end effector and the position of the obstacles. The outputs of the model are the predicted motion of the human body and the predicted human intention. We use this model to analyze a handover collaborative task with a robot where the robot is able to predict the future motion of the human and use this information in it’s planner. Several experiments are performed where human volunteers fill a standard poll to rate different features, taking into account when the robot uses the prediction versus when the robot doesn’t use the prediction.","PeriodicalId":250997,"journal":{"name":"2022 31st IEEE International Conference on Robot and Human Interactive Communication (RO-MAN)","volume":"26 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-08-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Context and Intention for 3D Human Motion Prediction: Experimentation and User study in Handover Tasks\",\"authors\":\"Javier Laplaza, A. Garrell, F. Moreno-Noguer, A. Sanfeliu\",\"doi\":\"10.1109/RO-MAN53752.2022.9900743\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this work we present a novel attention deep learning model that uses context and human intention for 3D human body motion prediction in handover human-robot tasks. This model uses a multi-head attention architecture which incorporates as inputs the human motion, the robot end effector and the position of the obstacles. The outputs of the model are the predicted motion of the human body and the predicted human intention. We use this model to analyze a handover collaborative task with a robot where the robot is able to predict the future motion of the human and use this information in it’s planner. Several experiments are performed where human volunteers fill a standard poll to rate different features, taking into account when the robot uses the prediction versus when the robot doesn’t use the prediction.\",\"PeriodicalId\":250997,\"journal\":{\"name\":\"2022 31st IEEE International Conference on Robot and Human Interactive Communication (RO-MAN)\",\"volume\":\"26 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-08-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 31st IEEE International Conference on Robot and Human Interactive Communication (RO-MAN)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/RO-MAN53752.2022.9900743\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 31st IEEE International Conference on Robot and Human Interactive Communication (RO-MAN)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/RO-MAN53752.2022.9900743","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Context and Intention for 3D Human Motion Prediction: Experimentation and User study in Handover Tasks
In this work we present a novel attention deep learning model that uses context and human intention for 3D human body motion prediction in handover human-robot tasks. This model uses a multi-head attention architecture which incorporates as inputs the human motion, the robot end effector and the position of the obstacles. The outputs of the model are the predicted motion of the human body and the predicted human intention. We use this model to analyze a handover collaborative task with a robot where the robot is able to predict the future motion of the human and use this information in it’s planner. Several experiments are performed where human volunteers fill a standard poll to rate different features, taking into account when the robot uses the prediction versus when the robot doesn’t use the prediction.