基于$\beta$-散度的张量模型的非负潜分解用于时间感知QoS预测

Zemiao Peng, Hao Wu
{"title":"基于$\\beta$-散度的张量模型的非负潜分解用于时间感知QoS预测","authors":"Zemiao Peng, Hao Wu","doi":"10.1109/ICNSC55942.2022.10004118","DOIUrl":null,"url":null,"abstract":"A non-negative latent factorization of tensors (NLFT) model can well model the temporal pattern hidden in non-negative quality-of-service (QoS) data for predicting the unobserved ones with high accuracy. However, existing NLFT models' objective function is based on Euclidean distance, which is only a special case of $\\beta$-divergence. Hence, can we build a generalized NLFT model via adopting $\\beta$-divergence to achieve prediction accuracy gain? To tackle this issue, this paper proposes a $\\beta$-divergence-based NLFT model ($\\beta$-NLFT). Its ideas are two-fold: 1) building a learning objective with $\\beta$-divergence to achieve higher prediction accuracy; and 2) implementing self-adaptation of hyper-parameters to improve practicability. Experimental results generated from two dynamic QoS datasets show that the proposed $\\beta$-NLFT model can achieve the higher prediction accuracy than state-of-the-art models several when predicting the unobserved QoS data.","PeriodicalId":230499,"journal":{"name":"2022 IEEE International Conference on Networking, Sensing and Control (ICNSC)","volume":"148 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-12-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Non-Negative Latent Factorization of Tensors Model Based on $\\\\beta$-Divergence for Time-Aware QoS Prediction\",\"authors\":\"Zemiao Peng, Hao Wu\",\"doi\":\"10.1109/ICNSC55942.2022.10004118\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A non-negative latent factorization of tensors (NLFT) model can well model the temporal pattern hidden in non-negative quality-of-service (QoS) data for predicting the unobserved ones with high accuracy. However, existing NLFT models' objective function is based on Euclidean distance, which is only a special case of $\\\\beta$-divergence. Hence, can we build a generalized NLFT model via adopting $\\\\beta$-divergence to achieve prediction accuracy gain? To tackle this issue, this paper proposes a $\\\\beta$-divergence-based NLFT model ($\\\\beta$-NLFT). Its ideas are two-fold: 1) building a learning objective with $\\\\beta$-divergence to achieve higher prediction accuracy; and 2) implementing self-adaptation of hyper-parameters to improve practicability. Experimental results generated from two dynamic QoS datasets show that the proposed $\\\\beta$-NLFT model can achieve the higher prediction accuracy than state-of-the-art models several when predicting the unobserved QoS data.\",\"PeriodicalId\":230499,\"journal\":{\"name\":\"2022 IEEE International Conference on Networking, Sensing and Control (ICNSC)\",\"volume\":\"148 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-12-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 IEEE International Conference on Networking, Sensing and Control (ICNSC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICNSC55942.2022.10004118\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE International Conference on Networking, Sensing and Control (ICNSC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICNSC55942.2022.10004118","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

张量的非负潜因子分解(NLFT)模型可以很好地模拟隐藏在非负服务质量(QoS)数据中的时间模式,从而高精度地预测未观测到的数据。然而,现有NLFT模型的目标函数是基于欧几里得距离的,这只是$\beta$-散度的特殊情况。因此,我们是否可以通过采用$\beta$-divergence来构建广义NLFT模型来获得预测精度增益?为了解决这个问题,本文提出了一个基于$\beta$-散度的NLFT模型($\beta$-NLFT)。它的思想有两个方面:1)建立一个具有$\beta$-散度的学习目标,以达到更高的预测精度;2)实现超参数自适应,提高实用性。两个动态QoS数据集的实验结果表明,在预测未观察到的QoS数据时,所提出的$\beta$-NLFT模型比现有的几种模型具有更高的预测精度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Non-Negative Latent Factorization of Tensors Model Based on $\beta$-Divergence for Time-Aware QoS Prediction
A non-negative latent factorization of tensors (NLFT) model can well model the temporal pattern hidden in non-negative quality-of-service (QoS) data for predicting the unobserved ones with high accuracy. However, existing NLFT models' objective function is based on Euclidean distance, which is only a special case of $\beta$-divergence. Hence, can we build a generalized NLFT model via adopting $\beta$-divergence to achieve prediction accuracy gain? To tackle this issue, this paper proposes a $\beta$-divergence-based NLFT model ($\beta$-NLFT). Its ideas are two-fold: 1) building a learning objective with $\beta$-divergence to achieve higher prediction accuracy; and 2) implementing self-adaptation of hyper-parameters to improve practicability. Experimental results generated from two dynamic QoS datasets show that the proposed $\beta$-NLFT model can achieve the higher prediction accuracy than state-of-the-art models several when predicting the unobserved QoS data.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
High-dimensional Feature Selection in Classification: A Length-Adaptive Evolutionary Approach SFME: Score Fusion from Multiple Experts for Long-tailed Recognition Attention and Cost-Sensitive Graph Neural Network for Imbalanced Node Classification Conditioning Customers' Product Reviews for Accurate Classification Performance Constraint Programming for Modeling and Solving a Hybrid Flow Shop Scheduling Problem
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1