基于聚类的模糊知识库约简在friq学习中的应用

T. Tompa, S. Kovács
{"title":"基于聚类的模糊知识库约简在friq学习中的应用","authors":"T. Tompa, S. Kovács","doi":"10.1109/SAMI.2017.7880302","DOIUrl":null,"url":null,"abstract":"This paper introduces a fuzzy knowledgebase reduction method with applying a clustering technique in the Fuzzy Rule Interpolation-based Q-learning (FRIQ-learning). The FRIQ-learning method stars with an empty knowledgebase, which is a fuzzy rule-base filled only with rules defining the boundaries of the problem space. Then the system builds the rule-base incrementally episode by episode, based on a properly defined reward function. The FRIQ-learning method is finished, when its terminating conditions become true. This case we get the final rule-base as a solution for the given problem. But the constructed final rule-base may contain redundant rules, which can be automatically omitted from the rule-base by reduction methods. The main goal of the paper is to introduce a new, clustering based reduction method, which is suitable for eliminating the unnecessary rules of the rule-base and hence decrease the size of the fuzzy knowledgebase. For demonstrating the benefits of the suggested clustering based fuzzy knowledgebase reduction method, application examples of the \"cart pole\" and the \"mountain car\" benchmarks are also discussed briefly in the paper.","PeriodicalId":105599,"journal":{"name":"2017 IEEE 15th International Symposium on Applied Machine Intelligence and Informatics (SAMI)","volume":"262 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"13","resultStr":"{\"title\":\"Clustering-based fuzzy knowledgebase reduction in the FRIQ-learning\",\"authors\":\"T. Tompa, S. Kovács\",\"doi\":\"10.1109/SAMI.2017.7880302\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper introduces a fuzzy knowledgebase reduction method with applying a clustering technique in the Fuzzy Rule Interpolation-based Q-learning (FRIQ-learning). The FRIQ-learning method stars with an empty knowledgebase, which is a fuzzy rule-base filled only with rules defining the boundaries of the problem space. Then the system builds the rule-base incrementally episode by episode, based on a properly defined reward function. The FRIQ-learning method is finished, when its terminating conditions become true. This case we get the final rule-base as a solution for the given problem. But the constructed final rule-base may contain redundant rules, which can be automatically omitted from the rule-base by reduction methods. The main goal of the paper is to introduce a new, clustering based reduction method, which is suitable for eliminating the unnecessary rules of the rule-base and hence decrease the size of the fuzzy knowledgebase. For demonstrating the benefits of the suggested clustering based fuzzy knowledgebase reduction method, application examples of the \\\"cart pole\\\" and the \\\"mountain car\\\" benchmarks are also discussed briefly in the paper.\",\"PeriodicalId\":105599,\"journal\":{\"name\":\"2017 IEEE 15th International Symposium on Applied Machine Intelligence and Informatics (SAMI)\",\"volume\":\"262 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1900-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"13\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 IEEE 15th International Symposium on Applied Machine Intelligence and Informatics (SAMI)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SAMI.2017.7880302\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE 15th International Symposium on Applied Machine Intelligence and Informatics (SAMI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SAMI.2017.7880302","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 13

摘要

本文将聚类技术应用于基于模糊规则插值的Q-learning (FRIQ-learning)中,提出了一种模糊知识库约简方法。friq -学习方法使用一个空知识库,它是一个模糊的规则库,只填充了定义问题空间边界的规则。然后,系统基于一个适当定义的奖励函数,逐步地一集一集地构建规则库。当终止条件满足时,friq学习方法完成。在这种情况下,我们得到最终的规则库作为给定问题的解决方案。但构建的最终规则库可能包含冗余规则,这些冗余规则可以通过约简方法自动从规则库中剔除。本文的主要目标是引入一种新的基于聚类的约简方法,该方法适合于去除规则库中不必要的规则,从而减小模糊知识库的大小。为了说明所建议的基于聚类的模糊知识库约简方法的优点,文中还简要讨论了“推车杆”和“山地车”基准的应用实例。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Clustering-based fuzzy knowledgebase reduction in the FRIQ-learning
This paper introduces a fuzzy knowledgebase reduction method with applying a clustering technique in the Fuzzy Rule Interpolation-based Q-learning (FRIQ-learning). The FRIQ-learning method stars with an empty knowledgebase, which is a fuzzy rule-base filled only with rules defining the boundaries of the problem space. Then the system builds the rule-base incrementally episode by episode, based on a properly defined reward function. The FRIQ-learning method is finished, when its terminating conditions become true. This case we get the final rule-base as a solution for the given problem. But the constructed final rule-base may contain redundant rules, which can be automatically omitted from the rule-base by reduction methods. The main goal of the paper is to introduce a new, clustering based reduction method, which is suitable for eliminating the unnecessary rules of the rule-base and hence decrease the size of the fuzzy knowledgebase. For demonstrating the benefits of the suggested clustering based fuzzy knowledgebase reduction method, application examples of the "cart pole" and the "mountain car" benchmarks are also discussed briefly in the paper.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Self-organising symbolic aggregate approximation for real-time fault detection and diagnosis in transient dynamic systems Robot navigation in unknown environment using fuzzy logic Artificial neural network based IDS Video-based measurement system of parameters of the pyrotechnic effect Building environment analysis based on clustering methods from sensor data on top of the Hadoop platform
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1