基于自动注释激光雷达数据的三维卷积神经网络树木检测

A. Gupta, Jonathan Byrne, D. Moloney, Hujun Yin, Simon Watson
{"title":"基于自动注释激光雷达数据的三维卷积神经网络树木检测","authors":"A. Gupta, Jonathan Byrne, D. Moloney, Hujun Yin, Simon Watson","doi":"10.31256/ukras17.31","DOIUrl":null,"url":null,"abstract":"Methods In order to identify trees in LiDAR scans, ground points are first identified and filtered using a Progressive Morphological Filter. This filtered scan is then voxelized in a sparse 3D hierarchical data structure, VOLA (Byrne et al., 2017), in order to reduce the input resolution. A 2 bits per voxel approach is used to encode additional information such as colour, intensity and number of returns information.","PeriodicalId":392429,"journal":{"name":"UK-RAS Conference: Robots Working For and Among Us Proceedings","volume":"6 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-10-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"3D Convolutional Neural Networks for Tree Detection using Automatically Annotated LiDAR data\",\"authors\":\"A. Gupta, Jonathan Byrne, D. Moloney, Hujun Yin, Simon Watson\",\"doi\":\"10.31256/ukras17.31\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Methods In order to identify trees in LiDAR scans, ground points are first identified and filtered using a Progressive Morphological Filter. This filtered scan is then voxelized in a sparse 3D hierarchical data structure, VOLA (Byrne et al., 2017), in order to reduce the input resolution. A 2 bits per voxel approach is used to encode additional information such as colour, intensity and number of returns information.\",\"PeriodicalId\":392429,\"journal\":{\"name\":\"UK-RAS Conference: Robots Working For and Among Us Proceedings\",\"volume\":\"6 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-10-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"UK-RAS Conference: Robots Working For and Among Us Proceedings\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.31256/ukras17.31\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"UK-RAS Conference: Robots Working For and Among Us Proceedings","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.31256/ukras17.31","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

方法为了在激光雷达扫描中识别树木,首先使用渐进形态学滤波器对地面点进行识别和滤波。然后将过滤后的扫描体素化为稀疏的3D分层数据结构VOLA (Byrne et al., 2017),以降低输入分辨率。每体素2位的方法用于编码额外的信息,如颜色、强度和返回信息的数量。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
3D Convolutional Neural Networks for Tree Detection using Automatically Annotated LiDAR data
Methods In order to identify trees in LiDAR scans, ground points are first identified and filtered using a Progressive Morphological Filter. This filtered scan is then voxelized in a sparse 3D hierarchical data structure, VOLA (Byrne et al., 2017), in order to reduce the input resolution. A 2 bits per voxel approach is used to encode additional information such as colour, intensity and number of returns information.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Learning-based Robotic Task Planning for Endovascular Catheterization Parallel Task Planning for Multi-Robot Coordination People’s Perceptions of Task Criticality and Preferences for Robot Autonomy The impact of autonomous vehicles on traffic capacity at an intersection A Smart Contract Model for Agent Societies
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1