J. P. Mitchell, Grant Bruer, Mark E. Dean, J. Plank, G. Rose, Catherine D. Schuman
{"title":"NeoN:自主机器人导航的神经形态控制","authors":"J. P. Mitchell, Grant Bruer, Mark E. Dean, J. Plank, G. Rose, Catherine D. Schuman","doi":"10.1109/IRIS.2017.8250111","DOIUrl":null,"url":null,"abstract":"In this paper we describe the use of a new neuromorphic computing framework to implement the navigation system for a roaming, obstacle avoidance robot. Using a Dynamic Adaptive Neural Network Array (DANNA) structure, our TENNLab (Laboratory of Tennesseans Exploring Neural Networks) hardware/software co-design framework and evolutionary optimization (EO) as the training algorithm, we create, train, implement, and test a spiking neural network autonomous robot control system using an array of neuromorphic computing elements built on an FPGA. The simplicity and flexibility of the DANNA neuromorphic computing elements allow for sufficient scale and connectivity on a Xilinx Kintex-7 FPGA to support sensory input and motor control for a mobile robot to navigate a dynamically changing environment. We further describe how more complex capabilities can be added using the same platform, e.g. object identification and tracking.","PeriodicalId":213724,"journal":{"name":"2017 IEEE International Symposium on Robotics and Intelligent Sensors (IRIS)","volume":"31 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"31","resultStr":"{\"title\":\"NeoN: Neuromorphic control for autonomous robotic navigation\",\"authors\":\"J. P. Mitchell, Grant Bruer, Mark E. Dean, J. Plank, G. Rose, Catherine D. Schuman\",\"doi\":\"10.1109/IRIS.2017.8250111\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper we describe the use of a new neuromorphic computing framework to implement the navigation system for a roaming, obstacle avoidance robot. Using a Dynamic Adaptive Neural Network Array (DANNA) structure, our TENNLab (Laboratory of Tennesseans Exploring Neural Networks) hardware/software co-design framework and evolutionary optimization (EO) as the training algorithm, we create, train, implement, and test a spiking neural network autonomous robot control system using an array of neuromorphic computing elements built on an FPGA. The simplicity and flexibility of the DANNA neuromorphic computing elements allow for sufficient scale and connectivity on a Xilinx Kintex-7 FPGA to support sensory input and motor control for a mobile robot to navigate a dynamically changing environment. We further describe how more complex capabilities can be added using the same platform, e.g. object identification and tracking.\",\"PeriodicalId\":213724,\"journal\":{\"name\":\"2017 IEEE International Symposium on Robotics and Intelligent Sensors (IRIS)\",\"volume\":\"31 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"31\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 IEEE International Symposium on Robotics and Intelligent Sensors (IRIS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IRIS.2017.8250111\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE International Symposium on Robotics and Intelligent Sensors (IRIS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IRIS.2017.8250111","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
NeoN: Neuromorphic control for autonomous robotic navigation
In this paper we describe the use of a new neuromorphic computing framework to implement the navigation system for a roaming, obstacle avoidance robot. Using a Dynamic Adaptive Neural Network Array (DANNA) structure, our TENNLab (Laboratory of Tennesseans Exploring Neural Networks) hardware/software co-design framework and evolutionary optimization (EO) as the training algorithm, we create, train, implement, and test a spiking neural network autonomous robot control system using an array of neuromorphic computing elements built on an FPGA. The simplicity and flexibility of the DANNA neuromorphic computing elements allow for sufficient scale and connectivity on a Xilinx Kintex-7 FPGA to support sensory input and motor control for a mobile robot to navigate a dynamically changing environment. We further describe how more complex capabilities can be added using the same platform, e.g. object identification and tracking.