{"title":"基于一次性词汇设计和决策树的多类纹理分类提速","authors":"A. Ramanan, P. Ranganathan, M. Niranjan","doi":"10.1109/ICIINFS.2011.6038076","DOIUrl":null,"url":null,"abstract":"The bag-of-keypoints representation started to be used as a black box providing reliable and repeatable measurements from images for a wide range of applications such as visual object recognition and texture classification. This order less bag-of-keypoints approach has the advantage of simplicity, lack of global geometry, and state-of-the-art performance in recent texture classification tasks. In such a model, the construction of a visual vocabulary plays a crucial role that not only affects the classification performance but also the construction process is very time consuming which makes it hard to apply on large datasets. This paper presents a fast approach for texture classification that integrates existing ideas to relieve the excessive time involved both in constructing a visual vocabulary and classifying unknown images using a support vector machine based decision tree. We conduct a comparative evaluation on three benchmark texture datasets: UIUCTex, Brodatz, and CUReT. Our approach achieves comparable performance to previously reported results in multi-class classification at a drastically reduced time.","PeriodicalId":353966,"journal":{"name":"2011 6th International Conference on Industrial and Information Systems","volume":"52 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-10-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"Speeding up multi-class texture classification by one-pass vocabulary design and decision tree\",\"authors\":\"A. Ramanan, P. Ranganathan, M. Niranjan\",\"doi\":\"10.1109/ICIINFS.2011.6038076\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The bag-of-keypoints representation started to be used as a black box providing reliable and repeatable measurements from images for a wide range of applications such as visual object recognition and texture classification. This order less bag-of-keypoints approach has the advantage of simplicity, lack of global geometry, and state-of-the-art performance in recent texture classification tasks. In such a model, the construction of a visual vocabulary plays a crucial role that not only affects the classification performance but also the construction process is very time consuming which makes it hard to apply on large datasets. This paper presents a fast approach for texture classification that integrates existing ideas to relieve the excessive time involved both in constructing a visual vocabulary and classifying unknown images using a support vector machine based decision tree. We conduct a comparative evaluation on three benchmark texture datasets: UIUCTex, Brodatz, and CUReT. Our approach achieves comparable performance to previously reported results in multi-class classification at a drastically reduced time.\",\"PeriodicalId\":353966,\"journal\":{\"name\":\"2011 6th International Conference on Industrial and Information Systems\",\"volume\":\"52 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2011-10-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2011 6th International Conference on Industrial and Information Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICIINFS.2011.6038076\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 6th International Conference on Industrial and Information Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICIINFS.2011.6038076","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Speeding up multi-class texture classification by one-pass vocabulary design and decision tree
The bag-of-keypoints representation started to be used as a black box providing reliable and repeatable measurements from images for a wide range of applications such as visual object recognition and texture classification. This order less bag-of-keypoints approach has the advantage of simplicity, lack of global geometry, and state-of-the-art performance in recent texture classification tasks. In such a model, the construction of a visual vocabulary plays a crucial role that not only affects the classification performance but also the construction process is very time consuming which makes it hard to apply on large datasets. This paper presents a fast approach for texture classification that integrates existing ideas to relieve the excessive time involved both in constructing a visual vocabulary and classifying unknown images using a support vector machine based decision tree. We conduct a comparative evaluation on three benchmark texture datasets: UIUCTex, Brodatz, and CUReT. Our approach achieves comparable performance to previously reported results in multi-class classification at a drastically reduced time.