基于聚合残差变换的深度自编码器用于遥感数据的城市重建

T. Forbes, Charalambos (Charis) Poullis
{"title":"基于聚合残差变换的深度自编码器用于遥感数据的城市重建","authors":"T. Forbes, Charalambos (Charis) Poullis","doi":"10.1109/CRV.2018.00014","DOIUrl":null,"url":null,"abstract":"In this work we investigate urban reconstruction and propose a complete and automatic framework for reconstructing urban areas from remote sensing data. Firstly, we address the complex problem of semantic labeling and propose a novel network architecture named SegNeXT which combines the strengths of deep-autoencoders with feed-forward links in generating smooth predictions and reducing the number of learning parameters, with the effectiveness which cardinality-enabled residual-based building blocks have shown in improving prediction accuracy and outperforming deeper/wider network architectures with a smaller number of learning parameters. The network is trained with benchmark datasets and the reported results show that it can provide at least similar and in some cases better classification than state-of-the-art. Secondly, we address the problem of urban reconstruction and propose a complete pipeline for automatically converting semantic labels into virtual representations of the urban areas. An agglomerative clustering is performed on the points according to their classification and results in a set of contiguous and disjoint clusters. Finally, each cluster is processed according to the class it belongs: tree clusters are substituted with procedural models, cars are replaced with simplified CAD models, buildings' boundaries are extruded to form 3D models, and road, low vegetation, and clutter clusters are triangulated and simplified. The result is a complete virtual representation of the urban area. The proposed framework has been extensively tested on large-scale benchmark datasets and the semantic labeling and reconstruction results are reported.","PeriodicalId":281779,"journal":{"name":"2018 15th Conference on Computer and Robot Vision (CRV)","volume":"8 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Deep Autoencoders with Aggregated Residual Transformations for Urban Reconstruction from Remote Sensing Data\",\"authors\":\"T. Forbes, Charalambos (Charis) Poullis\",\"doi\":\"10.1109/CRV.2018.00014\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this work we investigate urban reconstruction and propose a complete and automatic framework for reconstructing urban areas from remote sensing data. Firstly, we address the complex problem of semantic labeling and propose a novel network architecture named SegNeXT which combines the strengths of deep-autoencoders with feed-forward links in generating smooth predictions and reducing the number of learning parameters, with the effectiveness which cardinality-enabled residual-based building blocks have shown in improving prediction accuracy and outperforming deeper/wider network architectures with a smaller number of learning parameters. The network is trained with benchmark datasets and the reported results show that it can provide at least similar and in some cases better classification than state-of-the-art. Secondly, we address the problem of urban reconstruction and propose a complete pipeline for automatically converting semantic labels into virtual representations of the urban areas. An agglomerative clustering is performed on the points according to their classification and results in a set of contiguous and disjoint clusters. Finally, each cluster is processed according to the class it belongs: tree clusters are substituted with procedural models, cars are replaced with simplified CAD models, buildings' boundaries are extruded to form 3D models, and road, low vegetation, and clutter clusters are triangulated and simplified. The result is a complete virtual representation of the urban area. The proposed framework has been extensively tested on large-scale benchmark datasets and the semantic labeling and reconstruction results are reported.\",\"PeriodicalId\":281779,\"journal\":{\"name\":\"2018 15th Conference on Computer and Robot Vision (CRV)\",\"volume\":\"8 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 15th Conference on Computer and Robot Vision (CRV)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CRV.2018.00014\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 15th Conference on Computer and Robot Vision (CRV)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CRV.2018.00014","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

在本文中,我们研究了城市重建,并提出了一个完整的、自动的基于遥感数据的城市重建框架。首先,我们解决了复杂的语义标记问题,并提出了一种名为SegNeXT的新型网络架构,该架构结合了深度自编码器与前馈链接在生成平滑预测和减少学习参数数量方面的优势,以及基于基数的残差构建块在提高预测精度和使用较少学习参数优于更深/更广网络架构方面的有效性。该网络使用基准数据集进行训练,报告的结果表明,它可以提供至少与最先进的分类方法相似,在某些情况下甚至更好。其次,我们解决了城市改造问题,并提出了一个完整的管道来自动将语义标签转换为城市区域的虚拟表示。根据点的分类对其进行聚类,得到一组连续和不相交的聚类。最后,对每个聚类按照所属的类进行处理:用程序模型代替树木聚类,用简化的CAD模型代替汽车聚类,挤压建筑物的边界形成三维模型,对道路、低植被、杂波聚类进行三角化和简化。其结果是一个完整的城市区域的虚拟表示。该框架已在大规模基准数据集上进行了广泛的测试,并报告了语义标注和重构结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Deep Autoencoders with Aggregated Residual Transformations for Urban Reconstruction from Remote Sensing Data
In this work we investigate urban reconstruction and propose a complete and automatic framework for reconstructing urban areas from remote sensing data. Firstly, we address the complex problem of semantic labeling and propose a novel network architecture named SegNeXT which combines the strengths of deep-autoencoders with feed-forward links in generating smooth predictions and reducing the number of learning parameters, with the effectiveness which cardinality-enabled residual-based building blocks have shown in improving prediction accuracy and outperforming deeper/wider network architectures with a smaller number of learning parameters. The network is trained with benchmark datasets and the reported results show that it can provide at least similar and in some cases better classification than state-of-the-art. Secondly, we address the problem of urban reconstruction and propose a complete pipeline for automatically converting semantic labels into virtual representations of the urban areas. An agglomerative clustering is performed on the points according to their classification and results in a set of contiguous and disjoint clusters. Finally, each cluster is processed according to the class it belongs: tree clusters are substituted with procedural models, cars are replaced with simplified CAD models, buildings' boundaries are extruded to form 3D models, and road, low vegetation, and clutter clusters are triangulated and simplified. The result is a complete virtual representation of the urban area. The proposed framework has been extensively tested on large-scale benchmark datasets and the semantic labeling and reconstruction results are reported.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Systematic Street View Sampling: High Quality Annotation of Power Infrastructure in Rural Ontario Deep Learning-Driven Depth from Defocus via Active Multispectral Quasi-Random Projections with Complex Subpatterns De-noising of Lidar Point Clouds Corrupted by Snowfall Grading Prenatal Hydronephrosis from Ultrasound Imaging Using Deep Convolutional Neural Networks Automotive Semi-specular Surface Defect Detection System
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1