顺序系统组合用于语音的机器翻译

D. Karakos, S. Khudanpur
{"title":"顺序系统组合用于语音的机器翻译","authors":"D. Karakos, S. Khudanpur","doi":"10.1109/SLT.2008.4777889","DOIUrl":null,"url":null,"abstract":"System combination is a technique which has been shown to yield significant gains in speech recognition and machine translation. Most combination schemes perform an alignment between different system outputs in order to produce lattices (or confusion networks), from which a composite hypothesis is chosen, possibly with the help of a large language model. The benefit of this approach is two-fold: (i) whenever many systems agree with each other on a set of words, the combination output contains these words with high confidence; and (ii) whenever the systems disagree, the language model resolves the ambiguity based on the (probably correct) agreed upon context. The case of machine translation system combination is more challenging because of the different word orders of the translations: the alignment has to incorporate computationally expensive movements of word blocks. In this paper, we show how one can combine translation outputs efficiently, extending the incremental alignment procedure of (A-V.I. Rosti et al., 2008). A comparison between different system combination design choices is performed on an Arabic speech translation task.","PeriodicalId":186876,"journal":{"name":"2008 IEEE Spoken Language Technology Workshop","volume":"57 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2008-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"Sequential system combination for machine translation of speech\",\"authors\":\"D. Karakos, S. Khudanpur\",\"doi\":\"10.1109/SLT.2008.4777889\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"System combination is a technique which has been shown to yield significant gains in speech recognition and machine translation. Most combination schemes perform an alignment between different system outputs in order to produce lattices (or confusion networks), from which a composite hypothesis is chosen, possibly with the help of a large language model. The benefit of this approach is two-fold: (i) whenever many systems agree with each other on a set of words, the combination output contains these words with high confidence; and (ii) whenever the systems disagree, the language model resolves the ambiguity based on the (probably correct) agreed upon context. The case of machine translation system combination is more challenging because of the different word orders of the translations: the alignment has to incorporate computationally expensive movements of word blocks. In this paper, we show how one can combine translation outputs efficiently, extending the incremental alignment procedure of (A-V.I. Rosti et al., 2008). A comparison between different system combination design choices is performed on an Arabic speech translation task.\",\"PeriodicalId\":186876,\"journal\":{\"name\":\"2008 IEEE Spoken Language Technology Workshop\",\"volume\":\"57 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2008-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2008 IEEE Spoken Language Technology Workshop\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SLT.2008.4777889\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2008 IEEE Spoken Language Technology Workshop","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SLT.2008.4777889","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

摘要

系统组合是一种在语音识别和机器翻译方面取得显著成果的技术。大多数组合方案在不同的系统输出之间执行对齐,以产生格(或混淆网络),从中选择复合假设,可能借助大型语言模型。这种方法的好处是双重的:(i)当许多系统在一组单词上彼此一致时,组合输出以高置信度包含这些单词;(ii)当系统不一致时,语言模型基于(可能正确的)商定的上下文来解决歧义。机器翻译系统组合的情况更具挑战性,因为翻译的词序不同:对齐必须包含计算上昂贵的词块移动。在本文中,我们展示了如何有效地组合翻译输出,扩展了(a - v - i)的增量对齐过程。Rosti et al., 2008)。针对一个阿拉伯语语音翻译任务,对不同的系统组合设计选择进行了比较。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Sequential system combination for machine translation of speech
System combination is a technique which has been shown to yield significant gains in speech recognition and machine translation. Most combination schemes perform an alignment between different system outputs in order to produce lattices (or confusion networks), from which a composite hypothesis is chosen, possibly with the help of a large language model. The benefit of this approach is two-fold: (i) whenever many systems agree with each other on a set of words, the combination output contains these words with high confidence; and (ii) whenever the systems disagree, the language model resolves the ambiguity based on the (probably correct) agreed upon context. The case of machine translation system combination is more challenging because of the different word orders of the translations: the alignment has to incorporate computationally expensive movements of word blocks. In this paper, we show how one can combine translation outputs efficiently, extending the incremental alignment procedure of (A-V.I. Rosti et al., 2008). A comparison between different system combination design choices is performed on an Arabic speech translation task.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
“Who is this” quiz dialogue system and users' evaluation Latent dirichlet language model for speech recognition Modelling user behaviour in the HIS-POMDP dialogue manager A syntactic language model based on incremental CCG parsing Improving word segmentation for Thai speech translation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1