基于图像剪辑的快速视频文本检索任务的交叉注意模型

Yikang Li, Jenhao Hsiao, C. Ho
{"title":"基于图像剪辑的快速视频文本检索任务的交叉注意模型","authors":"Yikang Li, Jenhao Hsiao, C. Ho","doi":"10.1145/3512527.3531429","DOIUrl":null,"url":null,"abstract":"Video-text retrieval is an essential task in cross-modal information retrieval, i.e., retrieving relevant videos from a large and unlabelled dataset given textual queries. Existing methods that simply pool the image features (e.g., based on the CLIP encoder [14]) from frames to build the video descriptor often result in sub-optimal video-text search accuracy since the information among different modalities is not fully exchanged and aligned. In this paper, we proposed a novel dual-encoder model to address the challenging video-text retrieval problem, which uses a highly efficient cross-attention module to facilitate the information exchange between multiple modalities (i.e., video and text). The proposed VideoCLIP is evaluated on two benchmark video-text datasets, MSRVTT and DiDeMo, and the results show that our model can outperform existing state-of-the-art methods while the retrieval speed is much faster than the traditional query-agnostic search model.","PeriodicalId":179895,"journal":{"name":"Proceedings of the 2022 International Conference on Multimedia Retrieval","volume":"36 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-06-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"VideoCLIP: A Cross-Attention Model for Fast Video-Text Retrieval Task with Image CLIP\",\"authors\":\"Yikang Li, Jenhao Hsiao, C. Ho\",\"doi\":\"10.1145/3512527.3531429\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Video-text retrieval is an essential task in cross-modal information retrieval, i.e., retrieving relevant videos from a large and unlabelled dataset given textual queries. Existing methods that simply pool the image features (e.g., based on the CLIP encoder [14]) from frames to build the video descriptor often result in sub-optimal video-text search accuracy since the information among different modalities is not fully exchanged and aligned. In this paper, we proposed a novel dual-encoder model to address the challenging video-text retrieval problem, which uses a highly efficient cross-attention module to facilitate the information exchange between multiple modalities (i.e., video and text). The proposed VideoCLIP is evaluated on two benchmark video-text datasets, MSRVTT and DiDeMo, and the results show that our model can outperform existing state-of-the-art methods while the retrieval speed is much faster than the traditional query-agnostic search model.\",\"PeriodicalId\":179895,\"journal\":{\"name\":\"Proceedings of the 2022 International Conference on Multimedia Retrieval\",\"volume\":\"36 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-06-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 2022 International Conference on Multimedia Retrieval\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3512527.3531429\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2022 International Conference on Multimedia Retrieval","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3512527.3531429","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

视频文本检索是跨模式信息检索中的一项重要任务,即从给定文本查询的大型未标记数据集中检索相关视频。现有的方法只是简单地从帧中汇集图像特征(例如,基于CLIP编码器[14])来构建视频描述符,由于不同模态之间的信息没有完全交换和对齐,通常会导致视频文本搜索精度次优。在本文中,我们提出了一种新的双编码器模型来解决具有挑战性的视频文本检索问题,该模型使用高效的交叉注意模块来促进多种模式(即视频和文本)之间的信息交换。在MSRVTT和DiDeMo两个基准视频文本数据集上对所提出的VideoCLIP进行了评估,结果表明,我们的模型优于现有的最先进的方法,并且检索速度比传统的查询无关搜索模型快得多。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
VideoCLIP: A Cross-Attention Model for Fast Video-Text Retrieval Task with Image CLIP
Video-text retrieval is an essential task in cross-modal information retrieval, i.e., retrieving relevant videos from a large and unlabelled dataset given textual queries. Existing methods that simply pool the image features (e.g., based on the CLIP encoder [14]) from frames to build the video descriptor often result in sub-optimal video-text search accuracy since the information among different modalities is not fully exchanged and aligned. In this paper, we proposed a novel dual-encoder model to address the challenging video-text retrieval problem, which uses a highly efficient cross-attention module to facilitate the information exchange between multiple modalities (i.e., video and text). The proposed VideoCLIP is evaluated on two benchmark video-text datasets, MSRVTT and DiDeMo, and the results show that our model can outperform existing state-of-the-art methods while the retrieval speed is much faster than the traditional query-agnostic search model.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Self-Lifting: A Novel Framework for Unsupervised Voice-Face Association Learning DMPCANet: A Low Dimensional Aggregation Network for Visual Place Recognition Revisiting Performance Measures for Cross-Modal Hashing MFGAN: A Lightweight Fast Multi-task Multi-scale Feature-fusion Model based on GAN Weakly Supervised Fine-grained Recognition based on Combined Learning for Small Data and Coarse Label
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1