{"title":"基于图像剪辑的快速视频文本检索任务的交叉注意模型","authors":"Yikang Li, Jenhao Hsiao, C. Ho","doi":"10.1145/3512527.3531429","DOIUrl":null,"url":null,"abstract":"Video-text retrieval is an essential task in cross-modal information retrieval, i.e., retrieving relevant videos from a large and unlabelled dataset given textual queries. Existing methods that simply pool the image features (e.g., based on the CLIP encoder [14]) from frames to build the video descriptor often result in sub-optimal video-text search accuracy since the information among different modalities is not fully exchanged and aligned. In this paper, we proposed a novel dual-encoder model to address the challenging video-text retrieval problem, which uses a highly efficient cross-attention module to facilitate the information exchange between multiple modalities (i.e., video and text). The proposed VideoCLIP is evaluated on two benchmark video-text datasets, MSRVTT and DiDeMo, and the results show that our model can outperform existing state-of-the-art methods while the retrieval speed is much faster than the traditional query-agnostic search model.","PeriodicalId":179895,"journal":{"name":"Proceedings of the 2022 International Conference on Multimedia Retrieval","volume":"36 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-06-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"VideoCLIP: A Cross-Attention Model for Fast Video-Text Retrieval Task with Image CLIP\",\"authors\":\"Yikang Li, Jenhao Hsiao, C. Ho\",\"doi\":\"10.1145/3512527.3531429\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Video-text retrieval is an essential task in cross-modal information retrieval, i.e., retrieving relevant videos from a large and unlabelled dataset given textual queries. Existing methods that simply pool the image features (e.g., based on the CLIP encoder [14]) from frames to build the video descriptor often result in sub-optimal video-text search accuracy since the information among different modalities is not fully exchanged and aligned. In this paper, we proposed a novel dual-encoder model to address the challenging video-text retrieval problem, which uses a highly efficient cross-attention module to facilitate the information exchange between multiple modalities (i.e., video and text). The proposed VideoCLIP is evaluated on two benchmark video-text datasets, MSRVTT and DiDeMo, and the results show that our model can outperform existing state-of-the-art methods while the retrieval speed is much faster than the traditional query-agnostic search model.\",\"PeriodicalId\":179895,\"journal\":{\"name\":\"Proceedings of the 2022 International Conference on Multimedia Retrieval\",\"volume\":\"36 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-06-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 2022 International Conference on Multimedia Retrieval\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3512527.3531429\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2022 International Conference on Multimedia Retrieval","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3512527.3531429","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
VideoCLIP: A Cross-Attention Model for Fast Video-Text Retrieval Task with Image CLIP
Video-text retrieval is an essential task in cross-modal information retrieval, i.e., retrieving relevant videos from a large and unlabelled dataset given textual queries. Existing methods that simply pool the image features (e.g., based on the CLIP encoder [14]) from frames to build the video descriptor often result in sub-optimal video-text search accuracy since the information among different modalities is not fully exchanged and aligned. In this paper, we proposed a novel dual-encoder model to address the challenging video-text retrieval problem, which uses a highly efficient cross-attention module to facilitate the information exchange between multiple modalities (i.e., video and text). The proposed VideoCLIP is evaluated on two benchmark video-text datasets, MSRVTT and DiDeMo, and the results show that our model can outperform existing state-of-the-art methods while the retrieval speed is much faster than the traditional query-agnostic search model.