学习刚性和非刚性物体检测的相似性

Asako Kanezaki, E. Rodolà, D. Cremers, T. Harada
{"title":"学习刚性和非刚性物体检测的相似性","authors":"Asako Kanezaki, E. Rodolà, D. Cremers, T. Harada","doi":"10.1109/3DV.2014.61","DOIUrl":null,"url":null,"abstract":"In this paper, we propose an optimization method for estimating the parameters that typically appear in graph-theoretical formulations of the matching problem for object detection. Although several methods have been proposed to optimize parameters for graph matching in a way to promote correct correspondences and to restrict wrong ones, our approach is novel in the sense that it aims at improving performance in the more general task of object detection. In our formulation, similarity functions are adjusted so as to increase the overall similarity among a reference model and the observed target, and at the same time reduce the similarity among reference and \"non-target\" objects. We evaluate the proposed method in two challenging scenarios, namely object detection using data captured with a Kinect sensor in a real environment, and intrinsic metric learning for deformable shapes, demonstrating substantial improvements in both settings.","PeriodicalId":275516,"journal":{"name":"2014 2nd International Conference on 3D Vision","volume":"18 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-12-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":"{\"title\":\"Learning Similarities for Rigid and Non-rigid Object Detection\",\"authors\":\"Asako Kanezaki, E. Rodolà, D. Cremers, T. Harada\",\"doi\":\"10.1109/3DV.2014.61\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we propose an optimization method for estimating the parameters that typically appear in graph-theoretical formulations of the matching problem for object detection. Although several methods have been proposed to optimize parameters for graph matching in a way to promote correct correspondences and to restrict wrong ones, our approach is novel in the sense that it aims at improving performance in the more general task of object detection. In our formulation, similarity functions are adjusted so as to increase the overall similarity among a reference model and the observed target, and at the same time reduce the similarity among reference and \\\"non-target\\\" objects. We evaluate the proposed method in two challenging scenarios, namely object detection using data captured with a Kinect sensor in a real environment, and intrinsic metric learning for deformable shapes, demonstrating substantial improvements in both settings.\",\"PeriodicalId\":275516,\"journal\":{\"name\":\"2014 2nd International Conference on 3D Vision\",\"volume\":\"18 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-12-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"11\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2014 2nd International Conference on 3D Vision\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/3DV.2014.61\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 2nd International Conference on 3D Vision","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/3DV.2014.61","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 11

摘要

在本文中,我们提出了一种优化方法来估计通常出现在目标检测匹配问题的图理论公式中的参数。虽然已经提出了几种方法来优化图匹配的参数,以促进正确的对应并限制错误的对应,但我们的方法是新颖的,因为它旨在提高更一般的目标检测任务的性能。在我们的公式中,通过调整相似度函数来提高参考模型与观测目标之间的整体相似度,同时降低参考模型与“非目标”对象之间的相似度。我们在两个具有挑战性的场景中评估了所提出的方法,即在真实环境中使用Kinect传感器捕获的数据进行对象检测,以及对可变形形状进行内在度量学习,在这两种设置中都展示了实质性的改进。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Learning Similarities for Rigid and Non-rigid Object Detection
In this paper, we propose an optimization method for estimating the parameters that typically appear in graph-theoretical formulations of the matching problem for object detection. Although several methods have been proposed to optimize parameters for graph matching in a way to promote correct correspondences and to restrict wrong ones, our approach is novel in the sense that it aims at improving performance in the more general task of object detection. In our formulation, similarity functions are adjusted so as to increase the overall similarity among a reference model and the observed target, and at the same time reduce the similarity among reference and "non-target" objects. We evaluate the proposed method in two challenging scenarios, namely object detection using data captured with a Kinect sensor in a real environment, and intrinsic metric learning for deformable shapes, demonstrating substantial improvements in both settings.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Querying 3D Mesh Sequences for Human Action Retrieval Temporal Octrees for Compressing Dynamic Point Cloud Streams High-Quality Depth Recovery via Interactive Multi-view Stereo Iterative Closest Spectral Kernel Maps Close-Range Photometric Stereo with Point Light Sources
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1