便携式多主体定位与生命体征估计实时系统

Vijaysrinivas Rajagopal, Abdel-Kareem Moadi, A. Fathy, M. Abidi
{"title":"便携式多主体定位与生命体征估计实时系统","authors":"Vijaysrinivas Rajagopal, Abdel-Kareem Moadi, A. Fathy, M. Abidi","doi":"10.1109/RWS55624.2023.10046315","DOIUrl":null,"url":null,"abstract":"A real-time non-contact vital sign detection system is developed by utilizing neural network-based detection, multi-object tracking, and direction of arrival (DoA) techniques. The DoA produces a spatial-based image, which is fed into the detector. The detector is a convolutional neural network (CNN), which produces a list potential subject locations. These locations are propagated and associated via a tracking method called BYTE. All of these methods allow the system to accurately localize and track subjects as well as improve the robustness of vital sign estimation for stationary, multi-subject scenarios. We demonstrate that this real-time system produces low error rates of less than 1 and 3 BPM for breathing and heart rate estimations respectively in both single and multi-subject scenarios. All this is done while maintaining an average of 14 FPS on a portable Jetson Xavier NX.","PeriodicalId":110742,"journal":{"name":"2023 IEEE Radio and Wireless Symposium (RWS)","volume":"18 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-01-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Portable Real-Time System for Multi-Subject Localization and Vital Sign Estimation\",\"authors\":\"Vijaysrinivas Rajagopal, Abdel-Kareem Moadi, A. Fathy, M. Abidi\",\"doi\":\"10.1109/RWS55624.2023.10046315\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A real-time non-contact vital sign detection system is developed by utilizing neural network-based detection, multi-object tracking, and direction of arrival (DoA) techniques. The DoA produces a spatial-based image, which is fed into the detector. The detector is a convolutional neural network (CNN), which produces a list potential subject locations. These locations are propagated and associated via a tracking method called BYTE. All of these methods allow the system to accurately localize and track subjects as well as improve the robustness of vital sign estimation for stationary, multi-subject scenarios. We demonstrate that this real-time system produces low error rates of less than 1 and 3 BPM for breathing and heart rate estimations respectively in both single and multi-subject scenarios. All this is done while maintaining an average of 14 FPS on a portable Jetson Xavier NX.\",\"PeriodicalId\":110742,\"journal\":{\"name\":\"2023 IEEE Radio and Wireless Symposium (RWS)\",\"volume\":\"18 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-01-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2023 IEEE Radio and Wireless Symposium (RWS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/RWS55624.2023.10046315\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 IEEE Radio and Wireless Symposium (RWS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/RWS55624.2023.10046315","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

利用神经网络检测、多目标跟踪和到达方向(DoA)技术,开发了一种实时非接触生命体征检测系统。DoA产生一个基于空间的图像,该图像被输入到检测器中。检测器是一个卷积神经网络(CNN),它产生一个潜在的主题位置列表。这些位置通过称为BYTE的跟踪方法传播和关联。所有这些方法使系统能够准确地定位和跟踪受试者,并提高平稳、多受试者场景下生命体征估计的鲁棒性。我们证明了该实时系统在单主体和多主体场景下对呼吸和心率的估计分别产生低于1和3 BPM的低错误率。所有这些都是在便携式Jetson Xavier NX上保持平均14 FPS的情况下完成的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Portable Real-Time System for Multi-Subject Localization and Vital Sign Estimation
A real-time non-contact vital sign detection system is developed by utilizing neural network-based detection, multi-object tracking, and direction of arrival (DoA) techniques. The DoA produces a spatial-based image, which is fed into the detector. The detector is a convolutional neural network (CNN), which produces a list potential subject locations. These locations are propagated and associated via a tracking method called BYTE. All of these methods allow the system to accurately localize and track subjects as well as improve the robustness of vital sign estimation for stationary, multi-subject scenarios. We demonstrate that this real-time system produces low error rates of less than 1 and 3 BPM for breathing and heart rate estimations respectively in both single and multi-subject scenarios. All this is done while maintaining an average of 14 FPS on a portable Jetson Xavier NX.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Image-Rejection Up-/Down-Converter LO Distribution Chain for 5G mm-wave Phased-Array Systems Compact Half-Mode Triple-Band Bandpass Filter by using Stepped Impedance Resonators with Grounding Via Holes Performance Analysis for Coded Wireless Steganography System with OFDM Signaling Design and Analysis of a RF Front-End Receiver System Based on Multi-Layer Organic Filtering for Sub-6 GHz Mobile Communication Applications Improving Coding Efficiency in All-digital Transmitters
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1