利用时间和频率窗抑制Wigner-Ville分布中的假项

Kazi Newaj Faisal, R. Sharma
{"title":"利用时间和频率窗抑制Wigner-Ville分布中的假项","authors":"Kazi Newaj Faisal, R. Sharma","doi":"10.1109/PCEMS58491.2023.10136110","DOIUrl":null,"url":null,"abstract":"The Wigner-Ville distribution (WVD) is a widely used tool in the time-frequency analysis of non-stationary signals. However, the presence of false-terms in WVD for multicomponent signals can limit its applicability and interpretation. Various kernel and window-based smoothing methods have been used to remove false-terms from WVD, but they often come at the cost of reduced time-frequency resolution of autoterms. This paper proposes a novel sliding time and frequency windowing-based technique for removing false-terms from WVD, which aims to overcome the limitations of kernel-based methods. The proposed method segments a multi-component signal using overlapping windows in time and frequency domains successively and the WVD of each windowed signal is computed. The WVDs of all windowed signals are added together to obtain the falseterm free WVD. Energy scaling is also applied to minimize the effect of overlapping windows. Performance of the proposed method is evaluated for different multi-component synthetic signals and a natural ECG signal using various performance measures. The simulation results demonstrate that the proposed method can effectively remove false-terms from the WVD with improved auto-term enhancement and time-frequency resolution. Results from the proposed method are also compared with different kernel and window-based smoothing methods to show its superiority over these methods.","PeriodicalId":330870,"journal":{"name":"2023 2nd International Conference on Paradigm Shifts in Communications Embedded Systems, Machine Learning and Signal Processing (PCEMS)","volume":"85 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-04-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Suppression of False-terms in Wigner-Ville Distribution using Time and Frequency Windowing\",\"authors\":\"Kazi Newaj Faisal, R. Sharma\",\"doi\":\"10.1109/PCEMS58491.2023.10136110\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The Wigner-Ville distribution (WVD) is a widely used tool in the time-frequency analysis of non-stationary signals. However, the presence of false-terms in WVD for multicomponent signals can limit its applicability and interpretation. Various kernel and window-based smoothing methods have been used to remove false-terms from WVD, but they often come at the cost of reduced time-frequency resolution of autoterms. This paper proposes a novel sliding time and frequency windowing-based technique for removing false-terms from WVD, which aims to overcome the limitations of kernel-based methods. The proposed method segments a multi-component signal using overlapping windows in time and frequency domains successively and the WVD of each windowed signal is computed. The WVDs of all windowed signals are added together to obtain the falseterm free WVD. Energy scaling is also applied to minimize the effect of overlapping windows. Performance of the proposed method is evaluated for different multi-component synthetic signals and a natural ECG signal using various performance measures. The simulation results demonstrate that the proposed method can effectively remove false-terms from the WVD with improved auto-term enhancement and time-frequency resolution. Results from the proposed method are also compared with different kernel and window-based smoothing methods to show its superiority over these methods.\",\"PeriodicalId\":330870,\"journal\":{\"name\":\"2023 2nd International Conference on Paradigm Shifts in Communications Embedded Systems, Machine Learning and Signal Processing (PCEMS)\",\"volume\":\"85 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-04-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2023 2nd International Conference on Paradigm Shifts in Communications Embedded Systems, Machine Learning and Signal Processing (PCEMS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/PCEMS58491.2023.10136110\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 2nd International Conference on Paradigm Shifts in Communications Embedded Systems, Machine Learning and Signal Processing (PCEMS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/PCEMS58491.2023.10136110","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

Wigner-Ville分布(WVD)是一种广泛用于非平稳信号时频分析的工具。然而,对于多分量信号,虚项的存在限制了其适用性和解释。各种基于核和窗口的平滑方法已被用于从WVD中去除假项,但它们往往以降低自动项的时频分辨率为代价。本文提出了一种基于滑动时频窗的WVD伪项去除方法,克服了基于核函数的方法的局限性。该方法利用时间域和频域的重叠窗口对多分量信号进行连续分割,并计算每个窗口信号的WVD。将所有加窗信号的WVD加在一起得到无虚项WVD。能量缩放也被应用于最小化重叠窗口的影响。利用各种性能指标对不同的多分量合成信号和自然心电信号的性能进行了评估。仿真结果表明,该方法可以有效地去除WVD中的假项,提高了自项增强和时频分辨率。通过对不同的核平滑方法和窗平滑方法的比较,表明了该方法的优越性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Suppression of False-terms in Wigner-Ville Distribution using Time and Frequency Windowing
The Wigner-Ville distribution (WVD) is a widely used tool in the time-frequency analysis of non-stationary signals. However, the presence of false-terms in WVD for multicomponent signals can limit its applicability and interpretation. Various kernel and window-based smoothing methods have been used to remove false-terms from WVD, but they often come at the cost of reduced time-frequency resolution of autoterms. This paper proposes a novel sliding time and frequency windowing-based technique for removing false-terms from WVD, which aims to overcome the limitations of kernel-based methods. The proposed method segments a multi-component signal using overlapping windows in time and frequency domains successively and the WVD of each windowed signal is computed. The WVDs of all windowed signals are added together to obtain the falseterm free WVD. Energy scaling is also applied to minimize the effect of overlapping windows. Performance of the proposed method is evaluated for different multi-component synthetic signals and a natural ECG signal using various performance measures. The simulation results demonstrate that the proposed method can effectively remove false-terms from the WVD with improved auto-term enhancement and time-frequency resolution. Results from the proposed method are also compared with different kernel and window-based smoothing methods to show its superiority over these methods.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Interactive Zira Voice Assistant- A Personalized Desktop Application Gait-Face Based Human Recognition From Distant Video Survey on Diverse Image Inpainting using Diffusion Models Survey, Analysis and Association Rules derivation using Apriori Method for buying preference amongst kids of age-group 5 to 9 in India Implementing Chaos Based Optimisations on Neural Networks for Predictions of Distributed Denial-of-Service (DDoS) Attacks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1