基于CNN迁移学习的全景x线片下颌分割

Nur Nafiiyah, C. Fatichah, D. Herumurti, E. Astuti, R. Putra, E. Prakasa
{"title":"基于CNN迁移学习的全景x线片下颌分割","authors":"Nur Nafiiyah, C. Fatichah, D. Herumurti, E. Astuti, R. Putra, E. Prakasa","doi":"10.1109/COMNETSAT56033.2022.9994407","DOIUrl":null,"url":null,"abstract":"Gender identification and age estimation can use the mandible bone on panoramic radiographs. The identification process using the system requires a segmentation stage. Mandibular segmentation is research that has been done a lot to get an accurate object result. The purpose of this study was to segment the mandible on a panoramic radiograph using transfer learning CNN (MobileNetV2, ResNet18, ResNet50). The CNN method has been done before, so we tried to use the CNN method to produce clear and complete mandibular segmentation results on panoramic radiographs. The dataset used to train the model was taken from the Dental Hospital, Airlangga University, Surabaya. There are thousands of datasets, and based on the criteria of a radiologist, the data used are 38 images. The best result of mandibular segmentation on panoramic radiographs is the MobileNetV2 method because the highest Jaccard mean value is 0.9522.","PeriodicalId":221444,"journal":{"name":"2022 IEEE International Conference on Communication, Networks and Satellite (COMNETSAT)","volume":"EM-25 3","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-11-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Mandibular segmentation on panoramic radiographs with CNN Transfer Learning\",\"authors\":\"Nur Nafiiyah, C. Fatichah, D. Herumurti, E. Astuti, R. Putra, E. Prakasa\",\"doi\":\"10.1109/COMNETSAT56033.2022.9994407\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Gender identification and age estimation can use the mandible bone on panoramic radiographs. The identification process using the system requires a segmentation stage. Mandibular segmentation is research that has been done a lot to get an accurate object result. The purpose of this study was to segment the mandible on a panoramic radiograph using transfer learning CNN (MobileNetV2, ResNet18, ResNet50). The CNN method has been done before, so we tried to use the CNN method to produce clear and complete mandibular segmentation results on panoramic radiographs. The dataset used to train the model was taken from the Dental Hospital, Airlangga University, Surabaya. There are thousands of datasets, and based on the criteria of a radiologist, the data used are 38 images. The best result of mandibular segmentation on panoramic radiographs is the MobileNetV2 method because the highest Jaccard mean value is 0.9522.\",\"PeriodicalId\":221444,\"journal\":{\"name\":\"2022 IEEE International Conference on Communication, Networks and Satellite (COMNETSAT)\",\"volume\":\"EM-25 3\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-11-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 IEEE International Conference on Communication, Networks and Satellite (COMNETSAT)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/COMNETSAT56033.2022.9994407\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE International Conference on Communication, Networks and Satellite (COMNETSAT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/COMNETSAT56033.2022.9994407","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

利用下颌骨全景x线片进行性别鉴定和年龄估计。使用该系统的识别过程需要一个分段阶段。为了得到准确的目标分割结果,人们进行了大量的研究。本研究的目的是使用迁移学习CNN (MobileNetV2, ResNet18, ResNet50)在全景x线片上分割下颌骨。CNN方法之前已经做过,所以我们尝试使用CNN方法在全景x线片上产生清晰完整的下颌分割结果。用于训练模型的数据集取自泗水Airlangga大学牙科医院。有成千上万的数据集,根据放射科医生的标准,使用的数据是38张图像。全景x线片下颌分割的最佳结果是MobileNetV2方法,其Jaccard均值最高为0.9522。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Mandibular segmentation on panoramic radiographs with CNN Transfer Learning
Gender identification and age estimation can use the mandible bone on panoramic radiographs. The identification process using the system requires a segmentation stage. Mandibular segmentation is research that has been done a lot to get an accurate object result. The purpose of this study was to segment the mandible on a panoramic radiograph using transfer learning CNN (MobileNetV2, ResNet18, ResNet50). The CNN method has been done before, so we tried to use the CNN method to produce clear and complete mandibular segmentation results on panoramic radiographs. The dataset used to train the model was taken from the Dental Hospital, Airlangga University, Surabaya. There are thousands of datasets, and based on the criteria of a radiologist, the data used are 38 images. The best result of mandibular segmentation on panoramic radiographs is the MobileNetV2 method because the highest Jaccard mean value is 0.9522.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A Small-Scale Temperature Forecasting System using Time Series Models Applied in Ho Chi Minh City Clickbait Detection for Internet News Title with Deep Learning Feed Forward New Approach of Ensemble Method to Improve Performance of IDS using S-SDN Classifier Design and Implementation of On-Body Textile Antenna for Bird Tracking at 2.4 GHz Performance analysis of FBMC-PAM systems in frequency-selective Rayleigh fading channels in the presence of phase error
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1