根据用户偏好进行条件学习

I. Schmitt, David Zellhöfer
{"title":"根据用户偏好进行条件学习","authors":"I. Schmitt, David Zellhöfer","doi":"10.1109/RCIS.2012.6240424","DOIUrl":null,"url":null,"abstract":"The utility of preferences within the database domain is widely accepted. Preferences provide an effective means for query personalization and information filtering. Nevertheless, two preference approaches - qualitative and quantitative ones - do still compete. In this paper, we contribute to the bridging of both approaches and compare their expressive power and different usage scenarios. In order to combine qualitative and quantitative preferences, mappings are introduced and discussed, which transform a query from one approach into its counter-part. We consider Chomicki's preference formulas and as a quantitative approach our CQQL approach that extends the relational calculus with proximity predicates. In order to facilitate query formulation for the user, we extend the CQQL approach to condition learning. That is, user-defined preferences amongst database objects serve as input to learn logical conditions within a CQQL query. Hereby, we can support the user in the cognitively demanding task of query formulation.","PeriodicalId":130476,"journal":{"name":"2012 Sixth International Conference on Research Challenges in Information Science (RCIS)","volume":"18 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-05-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Condition learning from user preferences\",\"authors\":\"I. Schmitt, David Zellhöfer\",\"doi\":\"10.1109/RCIS.2012.6240424\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The utility of preferences within the database domain is widely accepted. Preferences provide an effective means for query personalization and information filtering. Nevertheless, two preference approaches - qualitative and quantitative ones - do still compete. In this paper, we contribute to the bridging of both approaches and compare their expressive power and different usage scenarios. In order to combine qualitative and quantitative preferences, mappings are introduced and discussed, which transform a query from one approach into its counter-part. We consider Chomicki's preference formulas and as a quantitative approach our CQQL approach that extends the relational calculus with proximity predicates. In order to facilitate query formulation for the user, we extend the CQQL approach to condition learning. That is, user-defined preferences amongst database objects serve as input to learn logical conditions within a CQQL query. Hereby, we can support the user in the cognitively demanding task of query formulation.\",\"PeriodicalId\":130476,\"journal\":{\"name\":\"2012 Sixth International Conference on Research Challenges in Information Science (RCIS)\",\"volume\":\"18 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-05-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2012 Sixth International Conference on Research Challenges in Information Science (RCIS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/RCIS.2012.6240424\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 Sixth International Conference on Research Challenges in Information Science (RCIS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/RCIS.2012.6240424","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

在数据库域中使用首选项是被广泛接受的。首选项为查询个性化和信息过滤提供了有效的手段。然而,两种偏好的方法——定性和定量——仍在竞争。在本文中,我们将这两种方法连接起来,并比较它们的表达能力和不同的使用场景。为了将定性偏好和定量偏好结合起来,引入并讨论了映射,将查询从一种方式转换为另一种方式。我们考虑了Chomicki的偏好公式,作为一种定量方法,我们的CQQL方法用邻近谓词扩展了关系演算。为了方便用户制定查询,我们将CQQL方法扩展到条件学习。也就是说,数据库对象之间的用户定义首选项可以作为学习CQQL查询中的逻辑条件的输入。因此,我们可以支持用户的认知要求较高的任务的查询公式。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Condition learning from user preferences
The utility of preferences within the database domain is widely accepted. Preferences provide an effective means for query personalization and information filtering. Nevertheless, two preference approaches - qualitative and quantitative ones - do still compete. In this paper, we contribute to the bridging of both approaches and compare their expressive power and different usage scenarios. In order to combine qualitative and quantitative preferences, mappings are introduced and discussed, which transform a query from one approach into its counter-part. We consider Chomicki's preference formulas and as a quantitative approach our CQQL approach that extends the relational calculus with proximity predicates. In order to facilitate query formulation for the user, we extend the CQQL approach to condition learning. That is, user-defined preferences amongst database objects serve as input to learn logical conditions within a CQQL query. Hereby, we can support the user in the cognitively demanding task of query formulation.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
The i∗ framework: The way ahead Conceptual meta-environment for Deaf children Literacy challenge: How to design effective Artifacts for bilingualism construction Human genome conceptual modeling: An ontological framework for the design and implementation of genomic Information Systems Dealing with trust and control: A meta-model for trustworthy information systems development Applying transdisciplinarity principles in the information services co-creation process
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1