L. Kuhnel, K. Neumann, F. Langer, D. Erni, R. Schmechel, N. Benson
{"title":"溶液可处理GHz硅肖特基二极管","authors":"L. Kuhnel, K. Neumann, F. Langer, D. Erni, R. Schmechel, N. Benson","doi":"10.1109/IFETC49530.2021.9580525","DOIUrl":null,"url":null,"abstract":"Printed, flexible electronics are a key component within the Internet-of- Things concept as they exhibit the potential for high-throughput and cost-effective manufacturing. However, due to the limited high frequency performance of today's printable electronic materials, there still is a need for electronic components capable of switching speeds in the GHz range. We cater to this need by introducing a new type of Schottky diode based on a printable and laser modified silicon nanoparticle thin film, which operates at switching speeds up to at least 4 GHz.","PeriodicalId":133484,"journal":{"name":"2021 IEEE International Flexible Electronics Technology Conference (IFETC)","volume":"11 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-08-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Solution processable GHz silicon Schottky diodes\",\"authors\":\"L. Kuhnel, K. Neumann, F. Langer, D. Erni, R. Schmechel, N. Benson\",\"doi\":\"10.1109/IFETC49530.2021.9580525\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Printed, flexible electronics are a key component within the Internet-of- Things concept as they exhibit the potential for high-throughput and cost-effective manufacturing. However, due to the limited high frequency performance of today's printable electronic materials, there still is a need for electronic components capable of switching speeds in the GHz range. We cater to this need by introducing a new type of Schottky diode based on a printable and laser modified silicon nanoparticle thin film, which operates at switching speeds up to at least 4 GHz.\",\"PeriodicalId\":133484,\"journal\":{\"name\":\"2021 IEEE International Flexible Electronics Technology Conference (IFETC)\",\"volume\":\"11 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-08-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 IEEE International Flexible Electronics Technology Conference (IFETC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IFETC49530.2021.9580525\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE International Flexible Electronics Technology Conference (IFETC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IFETC49530.2021.9580525","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Printed, flexible electronics are a key component within the Internet-of- Things concept as they exhibit the potential for high-throughput and cost-effective manufacturing. However, due to the limited high frequency performance of today's printable electronic materials, there still is a need for electronic components capable of switching speeds in the GHz range. We cater to this need by introducing a new type of Schottky diode based on a printable and laser modified silicon nanoparticle thin film, which operates at switching speeds up to at least 4 GHz.