3D-ResNeXt与Bi-LSTM网络融合模型在阿尔茨海默病分类中的应用

Xinying Wang, Jian Yi, Y. Li
{"title":"3D-ResNeXt与Bi-LSTM网络融合模型在阿尔茨海默病分类中的应用","authors":"Xinying Wang, Jian Yi, Y. Li","doi":"10.1109/ICCIS56375.2022.9998141","DOIUrl":null,"url":null,"abstract":"Alzheimer’s disease is a degenerative disease of the nervous system. If the doctor can detect the disease early, he can treat the patient in advance to slow down the deterioration of the health. We propose a network 3D_ResNeXt_Bi-LSTM fused with ResNeXt and Bi-LSTM, which uses MRI brain images to classify and recognize AD (Alzheimer disease) and NC (Normal Contrast) from neuroimaging. We use a 3D convolution kernel to replace the 2D convolution kernel and flatten the feature of the final ResNeXt into one-dimensional data and send it to Bi-LSTM. So that the network can thoroughly learn the spatial information of the 3D brain image data, finally we send the features to the classifier for classification. Experiments on the ADNI dataset show that our network’s highest classification accuracy for AD and NC is 98.97%.","PeriodicalId":398546,"journal":{"name":"2022 6th International Conference on Communication and Information Systems (ICCIS)","volume":"44 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-10-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Application of Fusion Model of 3D-ResNeXt and Bi-LSTM Network in Alzheimer’s Disease Classification\",\"authors\":\"Xinying Wang, Jian Yi, Y. Li\",\"doi\":\"10.1109/ICCIS56375.2022.9998141\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Alzheimer’s disease is a degenerative disease of the nervous system. If the doctor can detect the disease early, he can treat the patient in advance to slow down the deterioration of the health. We propose a network 3D_ResNeXt_Bi-LSTM fused with ResNeXt and Bi-LSTM, which uses MRI brain images to classify and recognize AD (Alzheimer disease) and NC (Normal Contrast) from neuroimaging. We use a 3D convolution kernel to replace the 2D convolution kernel and flatten the feature of the final ResNeXt into one-dimensional data and send it to Bi-LSTM. So that the network can thoroughly learn the spatial information of the 3D brain image data, finally we send the features to the classifier for classification. Experiments on the ADNI dataset show that our network’s highest classification accuracy for AD and NC is 98.97%.\",\"PeriodicalId\":398546,\"journal\":{\"name\":\"2022 6th International Conference on Communication and Information Systems (ICCIS)\",\"volume\":\"44 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-10-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 6th International Conference on Communication and Information Systems (ICCIS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICCIS56375.2022.9998141\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 6th International Conference on Communication and Information Systems (ICCIS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCIS56375.2022.9998141","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

阿尔茨海默病是一种神经系统退行性疾病。如果医生能及早发现疾病,他就能提前对病人进行治疗,以减缓健康的恶化。我们提出了一个融合ResNeXt和Bi-LSTM的网络3D_ResNeXt_Bi-LSTM,该网络使用MRI脑图像从神经成像中分类和识别AD(阿尔茨海默病)和NC(正常对比)。我们使用3D卷积核代替2D卷积核,将最终的ResNeXt特征平面化成一维数据并发送给Bi-LSTM。使网络能够深入学习三维脑图像数据的空间信息,最后将特征发送给分类器进行分类。在ADNI数据集上的实验表明,我们的网络对AD和NC的最高分类准确率为98.97%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Application of Fusion Model of 3D-ResNeXt and Bi-LSTM Network in Alzheimer’s Disease Classification
Alzheimer’s disease is a degenerative disease of the nervous system. If the doctor can detect the disease early, he can treat the patient in advance to slow down the deterioration of the health. We propose a network 3D_ResNeXt_Bi-LSTM fused with ResNeXt and Bi-LSTM, which uses MRI brain images to classify and recognize AD (Alzheimer disease) and NC (Normal Contrast) from neuroimaging. We use a 3D convolution kernel to replace the 2D convolution kernel and flatten the feature of the final ResNeXt into one-dimensional data and send it to Bi-LSTM. So that the network can thoroughly learn the spatial information of the 3D brain image data, finally we send the features to the classifier for classification. Experiments on the ADNI dataset show that our network’s highest classification accuracy for AD and NC is 98.97%.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A Novel Multi-Band Integrated Antenna Design in 5G Full Screen Mobile Phone CAE-UNet: An Effective Automatic Segmentation Model for CT Images of COVID-19 Decoder Implementation of Spatially Coupled LDPC Codes A Limit-Achievable Estimator for Range and Doppler Estimation in Pulse-Doppler Radar ICCIS 2022 Cover Page
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1