使用kinect从任意位置和姿势识别人

V. R. Reddy, T. Chattopadhyay, Kingshuk Chakravarty, Aniruddha Sinha
{"title":"使用kinect从任意位置和姿势识别人","authors":"V. R. Reddy, T. Chattopadhyay, Kingshuk Chakravarty, Aniruddha Sinha","doi":"10.1145/2668332.2668359","DOIUrl":null,"url":null,"abstract":"In this paper authors have proposed a person identification method independent of his position with respect to the input sensor. The proposed method works for various postures or states namely, standing, sitting, walking. This method initially identifies the person's state and separate SVM based models are used for person identification (PI) for each of these three above mentioned states.","PeriodicalId":223777,"journal":{"name":"Proceedings of the 12th ACM Conference on Embedded Network Sensor Systems","volume":"33 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-11-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"14","resultStr":"{\"title\":\"Person identification from arbitrary position and posture using kinect\",\"authors\":\"V. R. Reddy, T. Chattopadhyay, Kingshuk Chakravarty, Aniruddha Sinha\",\"doi\":\"10.1145/2668332.2668359\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper authors have proposed a person identification method independent of his position with respect to the input sensor. The proposed method works for various postures or states namely, standing, sitting, walking. This method initially identifies the person's state and separate SVM based models are used for person identification (PI) for each of these three above mentioned states.\",\"PeriodicalId\":223777,\"journal\":{\"name\":\"Proceedings of the 12th ACM Conference on Embedded Network Sensor Systems\",\"volume\":\"33 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-11-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"14\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 12th ACM Conference on Embedded Network Sensor Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/2668332.2668359\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 12th ACM Conference on Embedded Network Sensor Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2668332.2668359","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 14

摘要

本文提出了一种与输入传感器的位置无关的人的识别方法。建议的方法适用于各种姿势或状态,即站、坐、走。该方法首先识别人的状态,并针对上述三种状态分别使用基于SVM的模型进行人识别(PI)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Person identification from arbitrary position and posture using kinect
In this paper authors have proposed a person identification method independent of his position with respect to the input sensor. The proposed method works for various postures or states namely, standing, sitting, walking. This method initially identifies the person's state and separate SVM based models are used for person identification (PI) for each of these three above mentioned states.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
VeLoc: finding your car in the parking lot Interconnecting zigbee and bluetooth networks with BLupZi Wireless sensor/actuator network for model railroad control AirCloud: a cloud-based air-quality monitoring system for everyone Mobile contents on the big screen: adaptive frame filtering for mobile device screen sharing
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1