自适应雷达数据处理中的粒子滤波优化

Peter Rohal, J. Ochodnicky
{"title":"自适应雷达数据处理中的粒子滤波优化","authors":"Peter Rohal, J. Ochodnicky","doi":"10.1109/NTSP49686.2020.9229551","DOIUrl":null,"url":null,"abstract":"Adaptive data processing in modern radar systems is standard approach. The classic kalman filter, extended kalman filter and many other applications are usually used for state estimate and radar target tracking. Signal and data processing technology improvement allows the more effective target tracking in real time. In this paper, we approach the structure and key features of the optimal particle filtering (PF). The optimization criteria for PF are proposed and analyzed. The dependence of mean square error on the number of particles during track prediction by particle filter is discussed. Using this dependence, we were able to determine the minimum required number of particles to correctly predict the trajectory of the target depending on its dynamics (trajectory complexity). The results of off-line real radar data processing are analyzed.","PeriodicalId":197079,"journal":{"name":"2020 New Trends in Signal Processing (NTSP)","volume":"48 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-10-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Particle Filter Optimization for Adaptive Radar Data Processing\",\"authors\":\"Peter Rohal, J. Ochodnicky\",\"doi\":\"10.1109/NTSP49686.2020.9229551\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Adaptive data processing in modern radar systems is standard approach. The classic kalman filter, extended kalman filter and many other applications are usually used for state estimate and radar target tracking. Signal and data processing technology improvement allows the more effective target tracking in real time. In this paper, we approach the structure and key features of the optimal particle filtering (PF). The optimization criteria for PF are proposed and analyzed. The dependence of mean square error on the number of particles during track prediction by particle filter is discussed. Using this dependence, we were able to determine the minimum required number of particles to correctly predict the trajectory of the target depending on its dynamics (trajectory complexity). The results of off-line real radar data processing are analyzed.\",\"PeriodicalId\":197079,\"journal\":{\"name\":\"2020 New Trends in Signal Processing (NTSP)\",\"volume\":\"48 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-10-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 New Trends in Signal Processing (NTSP)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/NTSP49686.2020.9229551\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 New Trends in Signal Processing (NTSP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/NTSP49686.2020.9229551","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

自适应数据处理是现代雷达系统的标准方法。经典卡尔曼滤波、扩展卡尔曼滤波和其他许多应用通常用于状态估计和雷达目标跟踪。信号和数据处理技术的改进使得目标的实时跟踪更加有效。本文研究了最优粒子滤波(PF)的结构和关键特征。提出并分析了PF的优化准则。讨论了粒子滤波预测航迹时均方误差与粒子数的关系。利用这种依赖关系,我们能够根据目标的动力学(轨迹复杂性)确定正确预测目标轨迹所需的最小粒子数量。对脱机实际雷达数据处理结果进行了分析。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Particle Filter Optimization for Adaptive Radar Data Processing
Adaptive data processing in modern radar systems is standard approach. The classic kalman filter, extended kalman filter and many other applications are usually used for state estimate and radar target tracking. Signal and data processing technology improvement allows the more effective target tracking in real time. In this paper, we approach the structure and key features of the optimal particle filtering (PF). The optimization criteria for PF are proposed and analyzed. The dependence of mean square error on the number of particles during track prediction by particle filter is discussed. Using this dependence, we were able to determine the minimum required number of particles to correctly predict the trajectory of the target depending on its dynamics (trajectory complexity). The results of off-line real radar data processing are analyzed.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Finding the Sensitivity to Transfer Branch by Graphs Simple Filtering Algorithms for the Needs of Measuring UAV Parameters Development of Speaker Recognizer Using I-vectors in Two Programming Environments Parallel Image Signal Processing in a Distributed Car Plate Recognition System The Simulation Model for the Micro-Doppler Analysis
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1