基于智能感知与决策的现场通风安全决策系统

Jingzhao Li, Tengfei Li
{"title":"基于智能感知与决策的现场通风安全决策系统","authors":"Jingzhao Li, Tengfei Li","doi":"10.1504/IJCSE.2021.115102","DOIUrl":null,"url":null,"abstract":"There are many hidden safety hazards in mine ventilation process, which cannot be dealt with in time. It is because the type of coal mine and its mining conditions are complex and changeable, and the safety decision-making level is low when coal mine ventilation is abnormal. To solve these problems, this paper presents a decision system for scene ventilation safety based on intelligent perception and decision. First, grey correlation analysis and rough set theory are used to reduce the decision table horizontally and vertically. Then, the reduced data is input into the mine ventilation safety decision model based on the improved capsule network to make ventilation safety decision. Experimental results show that this system can significantly improve the accuracy of mine ventilation safety decision, has the characteristics of strong information perception ability and accurate decision, and provides an important guarantee for mine ventilation safety.","PeriodicalId":340410,"journal":{"name":"Int. J. Comput. Sci. Eng.","volume":"34 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-05-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A decision system based on intelligent perception and decision for scene ventilation safety\",\"authors\":\"Jingzhao Li, Tengfei Li\",\"doi\":\"10.1504/IJCSE.2021.115102\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"There are many hidden safety hazards in mine ventilation process, which cannot be dealt with in time. It is because the type of coal mine and its mining conditions are complex and changeable, and the safety decision-making level is low when coal mine ventilation is abnormal. To solve these problems, this paper presents a decision system for scene ventilation safety based on intelligent perception and decision. First, grey correlation analysis and rough set theory are used to reduce the decision table horizontally and vertically. Then, the reduced data is input into the mine ventilation safety decision model based on the improved capsule network to make ventilation safety decision. Experimental results show that this system can significantly improve the accuracy of mine ventilation safety decision, has the characteristics of strong information perception ability and accurate decision, and provides an important guarantee for mine ventilation safety.\",\"PeriodicalId\":340410,\"journal\":{\"name\":\"Int. J. Comput. Sci. Eng.\",\"volume\":\"34 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-05-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Int. J. Comput. Sci. Eng.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1504/IJCSE.2021.115102\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Int. J. Comput. Sci. Eng.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1504/IJCSE.2021.115102","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

矿井通风过程中存在许多安全隐患,不能及时处理。这是因为煤矿类型及其开采条件复杂多变,煤矿通风异常时安全决策水平较低。针对这些问题,本文提出了一种基于智能感知和智能决策的场景通风安全决策系统。首先,利用灰色关联分析和粗糙集理论对决策表进行横向和纵向约简;然后,将简化后的数据输入到基于改进胶囊网络的矿井通风安全决策模型中,进行通风安全决策。实验结果表明,该系统能显著提高矿井通风安全决策的准确性,具有信息感知能力强、决策准确的特点,为矿井通风安全提供了重要保障。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A decision system based on intelligent perception and decision for scene ventilation safety
There are many hidden safety hazards in mine ventilation process, which cannot be dealt with in time. It is because the type of coal mine and its mining conditions are complex and changeable, and the safety decision-making level is low when coal mine ventilation is abnormal. To solve these problems, this paper presents a decision system for scene ventilation safety based on intelligent perception and decision. First, grey correlation analysis and rough set theory are used to reduce the decision table horizontally and vertically. Then, the reduced data is input into the mine ventilation safety decision model based on the improved capsule network to make ventilation safety decision. Experimental results show that this system can significantly improve the accuracy of mine ventilation safety decision, has the characteristics of strong information perception ability and accurate decision, and provides an important guarantee for mine ventilation safety.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
ECC-based lightweight mutual authentication protocol for fog enabled IoT system using three-way authentication procedure Gene selection and classification combining information gain ratio with fruit fly optimisation algorithm for single-cell RNA-seq data Attitude control of an unmanned patrol helicopter based on an optimised spiking neural membrane system for use in coal mines CEMP-IR: a novel location aware cache invalidation and replacement policy Prediction of consumer preference for the bottom of the pyramid using EEG-based deep model
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1