{"title":"性能分析,质量功能部署和结构化方法","authors":"M. Maier","doi":"10.1109/AERO.1993.255324","DOIUrl":null,"url":null,"abstract":"Quality function deployment, (QFD), an approach to synthesizing several elements of system modeling and design into single unit, is presented. Behavioral, physical, and performance modeling are usually considered as separate aspects of system design without explicit linkages. Structured methodologies have developed linkages between behavioral and physical models before, but have not considered the integration of performance models. QFD integrates performance models with traditional structured models. In this method, performance requirements such as cost, weight, and detection range are partitioned into matrices. Partitioning is done by developing a performance model, preferably quantitative, for each requirement. The parameters of the model become the engineering objectives in a QFD analysis and the models are embedded in a spreadsheet version of the traditional QFD matrices. The performance model and its parameters are used to derive part of the functional model by recognizing that a given performance model implies some structure to the functionality of the system.<<ETX>>","PeriodicalId":136219,"journal":{"name":"1993 IEEE Aerospace Applications Conference Digest","volume":"3 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1993-01-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Performance analysis, quality function deployment and structured methods\",\"authors\":\"M. Maier\",\"doi\":\"10.1109/AERO.1993.255324\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Quality function deployment, (QFD), an approach to synthesizing several elements of system modeling and design into single unit, is presented. Behavioral, physical, and performance modeling are usually considered as separate aspects of system design without explicit linkages. Structured methodologies have developed linkages between behavioral and physical models before, but have not considered the integration of performance models. QFD integrates performance models with traditional structured models. In this method, performance requirements such as cost, weight, and detection range are partitioned into matrices. Partitioning is done by developing a performance model, preferably quantitative, for each requirement. The parameters of the model become the engineering objectives in a QFD analysis and the models are embedded in a spreadsheet version of the traditional QFD matrices. The performance model and its parameters are used to derive part of the functional model by recognizing that a given performance model implies some structure to the functionality of the system.<<ETX>>\",\"PeriodicalId\":136219,\"journal\":{\"name\":\"1993 IEEE Aerospace Applications Conference Digest\",\"volume\":\"3 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1993-01-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"1993 IEEE Aerospace Applications Conference Digest\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/AERO.1993.255324\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"1993 IEEE Aerospace Applications Conference Digest","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/AERO.1993.255324","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Performance analysis, quality function deployment and structured methods
Quality function deployment, (QFD), an approach to synthesizing several elements of system modeling and design into single unit, is presented. Behavioral, physical, and performance modeling are usually considered as separate aspects of system design without explicit linkages. Structured methodologies have developed linkages between behavioral and physical models before, but have not considered the integration of performance models. QFD integrates performance models with traditional structured models. In this method, performance requirements such as cost, weight, and detection range are partitioned into matrices. Partitioning is done by developing a performance model, preferably quantitative, for each requirement. The parameters of the model become the engineering objectives in a QFD analysis and the models are embedded in a spreadsheet version of the traditional QFD matrices. The performance model and its parameters are used to derive part of the functional model by recognizing that a given performance model implies some structure to the functionality of the system.<>