一种基于混合语言网页的汉英互译方法

Feiliang Ren, Jingbo Zhu, Huizhen Wang
{"title":"一种基于混合语言网页的汉英互译方法","authors":"Feiliang Ren, Jingbo Zhu, Huizhen Wang","doi":"10.1109/NLPKE.2010.5587832","DOIUrl":null,"url":null,"abstract":"In this paper, we propose a novel Chinese-English organization name translation method with the assistance of mix-language web resources. Firstly, all the implicit out-of-vocabulary terms in the input Chinese organization name are recognized by a CRFs model. Then the input Chinese organization name is translated without considering these recognized out-of-vocabulary terms. Secondly, we construct some efficient queries to find the mix-language web pages that contain both the original input organization name and its correct translation. At last, a similarity matching and limited expansion based translation identification approach is proposed to identify the correct translation from the returned web pages. Experimental results show that our method is effective for Chinese organization name translation and can improve performance of Chinese organization name translation significantly.","PeriodicalId":259975,"journal":{"name":"Proceedings of the 6th International Conference on Natural Language Processing and Knowledge Engineering(NLPKE-2010)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A novel Chinese-English on translation method using mix-language web pages\",\"authors\":\"Feiliang Ren, Jingbo Zhu, Huizhen Wang\",\"doi\":\"10.1109/NLPKE.2010.5587832\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we propose a novel Chinese-English organization name translation method with the assistance of mix-language web resources. Firstly, all the implicit out-of-vocabulary terms in the input Chinese organization name are recognized by a CRFs model. Then the input Chinese organization name is translated without considering these recognized out-of-vocabulary terms. Secondly, we construct some efficient queries to find the mix-language web pages that contain both the original input organization name and its correct translation. At last, a similarity matching and limited expansion based translation identification approach is proposed to identify the correct translation from the returned web pages. Experimental results show that our method is effective for Chinese organization name translation and can improve performance of Chinese organization name translation significantly.\",\"PeriodicalId\":259975,\"journal\":{\"name\":\"Proceedings of the 6th International Conference on Natural Language Processing and Knowledge Engineering(NLPKE-2010)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-09-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 6th International Conference on Natural Language Processing and Knowledge Engineering(NLPKE-2010)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/NLPKE.2010.5587832\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 6th International Conference on Natural Language Processing and Knowledge Engineering(NLPKE-2010)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/NLPKE.2010.5587832","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文提出了一种基于混合语言网络资源的中英文组织名称翻译方法。首先,利用CRFs模型对输入的中文组织名称中的所有隐式词汇外词进行识别。然后将输入的中文组织名称进行翻译,而不考虑这些已识别的词汇外术语。其次,我们构建了一些高效的查询来查找包含原始输入组织名称及其正确翻译的混合语言网页。最后,提出了一种基于相似性匹配和有限扩展的翻译识别方法,从返回的网页中识别出正确的翻译。实验结果表明,该方法对中文组织名称的翻译是有效的,可以显著提高中文组织名称的翻译性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A novel Chinese-English on translation method using mix-language web pages
In this paper, we propose a novel Chinese-English organization name translation method with the assistance of mix-language web resources. Firstly, all the implicit out-of-vocabulary terms in the input Chinese organization name are recognized by a CRFs model. Then the input Chinese organization name is translated without considering these recognized out-of-vocabulary terms. Secondly, we construct some efficient queries to find the mix-language web pages that contain both the original input organization name and its correct translation. At last, a similarity matching and limited expansion based translation identification approach is proposed to identify the correct translation from the returned web pages. Experimental results show that our method is effective for Chinese organization name translation and can improve performance of Chinese organization name translation significantly.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Dashboard: An integration and testing platform based on backboard architecture for NLP applications Chinese semantic role labeling based on semantic knowledge Transitivity in semantic relation learning Wisdom media “CAIWA Channel” based on natural language interface agent A new cascade algorithm based on CRFs for recognizing Chinese verb-object collocation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1