{"title":"基于加权支持向量机的垃圾邮件过滤方法","authors":"Xiao-li Chen, Pei-yu Liu, Zhen-fang Zhu, Y. Qiu","doi":"10.1109/ITIME.2009.5236212","DOIUrl":null,"url":null,"abstract":"The problem of content-based spam filtering on machine learning methods actually is a binary classification. SVMs can separate the data into two categories optimally so SVMs suit to spam filtering. With used into spam filtering, the standard support vector machine involves the minimization of the error function and the accuracy of the SVM is very high, but the degree of misclassification of legitimate emails is high. In order to solve that problem, this paper proposed a method of spam filtering based on weighted support vector machines. Experimental results show that the algorithm can enhance the filtering performance effectively.","PeriodicalId":398477,"journal":{"name":"2009 IEEE International Symposium on IT in Medicine & Education","volume":"101 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-09-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"25","resultStr":"{\"title\":\"A method of spam filtering based on weighted support vector machines\",\"authors\":\"Xiao-li Chen, Pei-yu Liu, Zhen-fang Zhu, Y. Qiu\",\"doi\":\"10.1109/ITIME.2009.5236212\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The problem of content-based spam filtering on machine learning methods actually is a binary classification. SVMs can separate the data into two categories optimally so SVMs suit to spam filtering. With used into spam filtering, the standard support vector machine involves the minimization of the error function and the accuracy of the SVM is very high, but the degree of misclassification of legitimate emails is high. In order to solve that problem, this paper proposed a method of spam filtering based on weighted support vector machines. Experimental results show that the algorithm can enhance the filtering performance effectively.\",\"PeriodicalId\":398477,\"journal\":{\"name\":\"2009 IEEE International Symposium on IT in Medicine & Education\",\"volume\":\"101 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2009-09-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"25\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2009 IEEE International Symposium on IT in Medicine & Education\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ITIME.2009.5236212\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 IEEE International Symposium on IT in Medicine & Education","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ITIME.2009.5236212","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A method of spam filtering based on weighted support vector machines
The problem of content-based spam filtering on machine learning methods actually is a binary classification. SVMs can separate the data into two categories optimally so SVMs suit to spam filtering. With used into spam filtering, the standard support vector machine involves the minimization of the error function and the accuracy of the SVM is very high, but the degree of misclassification of legitimate emails is high. In order to solve that problem, this paper proposed a method of spam filtering based on weighted support vector machines. Experimental results show that the algorithm can enhance the filtering performance effectively.