具有设置和可变子批次的灵活作业车间调度

Ge Yan, W. Aimin, Zhao Zijin
{"title":"具有设置和可变子批次的灵活作业车间调度","authors":"Ge Yan, W. Aimin, Zhao Zijin","doi":"10.1109/ICMIMT49010.2020.9041218","DOIUrl":null,"url":null,"abstract":"In the flexible job shop scheduling problem (FJSP), jobs are always processed in batches. Considering the scheduling objective of minimising the maximum completion time (Cmax), splitting each job into sublots is necessary. However, if the sublots are too small, the time loss caused by the frequent change of jobs on the same machine will increase. Therefore, all processes involved in the FJSP must be split into sublots considering efficiency. This paper proposes a mathematical model with the objective function of minimising the maximum completion time Cmax and the research objective of providing process-level batches and a scheduling technology for the FJSP with setups and sublots. A genetic algorithm is applied to optimise the allocation of the process-level batches on the machines. Finally, a software system for algorithm verification that verifies the validity of our proposed algorithm was developed.","PeriodicalId":377249,"journal":{"name":"2020 IEEE 11th International Conference on Mechanical and Intelligent Manufacturing Technologies (ICMIMT)","volume":"12 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Flexible Job-Shop Scheduling with Setups and Variable Sublots\",\"authors\":\"Ge Yan, W. Aimin, Zhao Zijin\",\"doi\":\"10.1109/ICMIMT49010.2020.9041218\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In the flexible job shop scheduling problem (FJSP), jobs are always processed in batches. Considering the scheduling objective of minimising the maximum completion time (Cmax), splitting each job into sublots is necessary. However, if the sublots are too small, the time loss caused by the frequent change of jobs on the same machine will increase. Therefore, all processes involved in the FJSP must be split into sublots considering efficiency. This paper proposes a mathematical model with the objective function of minimising the maximum completion time Cmax and the research objective of providing process-level batches and a scheduling technology for the FJSP with setups and sublots. A genetic algorithm is applied to optimise the allocation of the process-level batches on the machines. Finally, a software system for algorithm verification that verifies the validity of our proposed algorithm was developed.\",\"PeriodicalId\":377249,\"journal\":{\"name\":\"2020 IEEE 11th International Conference on Mechanical and Intelligent Manufacturing Technologies (ICMIMT)\",\"volume\":\"12 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 IEEE 11th International Conference on Mechanical and Intelligent Manufacturing Technologies (ICMIMT)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICMIMT49010.2020.9041218\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE 11th International Conference on Mechanical and Intelligent Manufacturing Technologies (ICMIMT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICMIMT49010.2020.9041218","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

在柔性作业车间调度问题(FJSP)中,作业总是分批处理的。考虑到最小化最大完工时间(Cmax)的调度目标,将每个作业划分为子批是必要的。但是,如果sublot太少,同一台机器上频繁更换作业造成的时间损失就会增加。因此,考虑到效率,必须将FJSP中涉及的所有过程分成子批次。本文提出了以最大完工时间Cmax为目标函数的数学模型,研究目标是为具有分段和分段的FJSP提供过程级批量和调度技术。采用遗传算法优化加工级批次在机器上的分配。最后,开发了算法验证软件系统,验证了算法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Flexible Job-Shop Scheduling with Setups and Variable Sublots
In the flexible job shop scheduling problem (FJSP), jobs are always processed in batches. Considering the scheduling objective of minimising the maximum completion time (Cmax), splitting each job into sublots is necessary. However, if the sublots are too small, the time loss caused by the frequent change of jobs on the same machine will increase. Therefore, all processes involved in the FJSP must be split into sublots considering efficiency. This paper proposes a mathematical model with the objective function of minimising the maximum completion time Cmax and the research objective of providing process-level batches and a scheduling technology for the FJSP with setups and sublots. A genetic algorithm is applied to optimise the allocation of the process-level batches on the machines. Finally, a software system for algorithm verification that verifies the validity of our proposed algorithm was developed.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Innovative Solutions for the Covering Process in the Manufacturing of Wire Harnesses to Increase the Automation Degree Sustainable Face-Machining of a Ti-6Al-4V Rod under Cooling Environments of Liquid Nitrogen and CO2 Snow [Title page] ICMIMT 2020 Conference Committees Comparative study of Hydrogen yield from magnesium waste products in Acetic acid and Iron chloride solution
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1