不规则分布下风电功率区间预测

A. Hussain, Daoqing Li, Rui Xu, Xiaodong Yu
{"title":"不规则分布下风电功率区间预测","authors":"A. Hussain, Daoqing Li, Rui Xu, Xiaodong Yu","doi":"10.1109/ICPSAsia52756.2021.9621480","DOIUrl":null,"url":null,"abstract":"In this article, a wind power interval forecasting method based on Parzen window estimation and interval optimization is proposed. First, the Parzen window estimation method is used to find the wind power forecast error distribution of arbitrary shape due to its property of good fitting and more compatibility with actual data. Second, the optimization method is used to find the shortest confidence interval under the irregular distribution. Finally, the wind power interval forecast result is obtained based on the precise and minimum interval width. Simulation results show that comparing with traditional method, the proposed method can obtain the minimum forecast interval under every confidence degree. The proposed approach is not only more precise but also more practical.","PeriodicalId":296085,"journal":{"name":"2021 IEEE/IAS Industrial and Commercial Power System Asia (I&CPS Asia)","volume":"3 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-07-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Wind Power Interval Forecasting under Irregular Distribution\",\"authors\":\"A. Hussain, Daoqing Li, Rui Xu, Xiaodong Yu\",\"doi\":\"10.1109/ICPSAsia52756.2021.9621480\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this article, a wind power interval forecasting method based on Parzen window estimation and interval optimization is proposed. First, the Parzen window estimation method is used to find the wind power forecast error distribution of arbitrary shape due to its property of good fitting and more compatibility with actual data. Second, the optimization method is used to find the shortest confidence interval under the irregular distribution. Finally, the wind power interval forecast result is obtained based on the precise and minimum interval width. Simulation results show that comparing with traditional method, the proposed method can obtain the minimum forecast interval under every confidence degree. The proposed approach is not only more precise but also more practical.\",\"PeriodicalId\":296085,\"journal\":{\"name\":\"2021 IEEE/IAS Industrial and Commercial Power System Asia (I&CPS Asia)\",\"volume\":\"3 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-07-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 IEEE/IAS Industrial and Commercial Power System Asia (I&CPS Asia)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICPSAsia52756.2021.9621480\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE/IAS Industrial and Commercial Power System Asia (I&CPS Asia)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICPSAsia52756.2021.9621480","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

本文提出了一种基于Parzen窗估计和区间优化的风电功率区间预测方法。首先,利用Parzen窗估计方法求解任意形状的风电预测误差分布,该方法拟合好,与实际数据的相容性较好;其次,利用优化方法寻找不规则分布下的最短置信区间。最后,根据最小区间宽度和精确区间宽度,得到风电区间预测结果。仿真结果表明,与传统方法相比,该方法能在每个置信度下获得最小的预测区间。所提出的方法不仅更精确,而且更实用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Wind Power Interval Forecasting under Irregular Distribution
In this article, a wind power interval forecasting method based on Parzen window estimation and interval optimization is proposed. First, the Parzen window estimation method is used to find the wind power forecast error distribution of arbitrary shape due to its property of good fitting and more compatibility with actual data. Second, the optimization method is used to find the shortest confidence interval under the irregular distribution. Finally, the wind power interval forecast result is obtained based on the precise and minimum interval width. Simulation results show that comparing with traditional method, the proposed method can obtain the minimum forecast interval under every confidence degree. The proposed approach is not only more precise but also more practical.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Simulation of No-load Medium Recovery Characteristics of CO2 Circuit Breaker The Energy Management Strategies of Residential Integrated Energy System Considering Integrated Demand Response Optimal Operation of Integrated Electricity-Gas Systems for Renewable Energy Accommodation Considering Flexible Resources Optimal Offering and Operating Strategy of CSP Plants under Different Support Mechanisms Power Loss Mitigation of Parallel-Connected Distributed Energy Resources in DC Microgrids Using a Dual-Ascent Hierarchical Control
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1