基于点到冲浪距离(PSD)的6D定位算法在gps拒绝场景下使用激光扫描仪进行粗糙地形探测

Adam Niewola, L. Podsędkowski, Jakub Niedzwiedzki
{"title":"基于点到冲浪距离(PSD)的6D定位算法在gps拒绝场景下使用激光扫描仪进行粗糙地形探测","authors":"Adam Niewola, L. Podsędkowski, Jakub Niedzwiedzki","doi":"10.1109/RoMoCo.2019.8787362","DOIUrl":null,"url":null,"abstract":"Mobile robots 6D outdoor localization algorithms using laser scanners in GPS-denied scenarios can rely on landmarks extraction or ICP-based scan matching. Both methods have significant disadvantages in rough terrain (lack of proper candidates for landmarks or problems with time consuming ICP-based scan matching), therefore, we proposed a new method based on robot's pose correction after every single laser scanner measurement, with the use of estimated distance between a scan point and the corresponding surfel on the reference 2.5D map known to mobile robot control system. The novelty of our method is that we do not have to make the point cloud registration into a common frame and we do not need extraction of landmarks from the point cloud as the landmark-based methods. Moreover, we do not require huge computational efforts in order to compare point clouds. We present the results of simulation tests using the data captured by FARO reference scanner and real terrain experiment with the use of our innovative laser scanner.","PeriodicalId":415070,"journal":{"name":"2019 12th International Workshop on Robot Motion and Control (RoMoCo)","volume":"71 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Point-to-Surfel-Distance- (PSD-) Based 6D Localization Algorithm for Rough Terrain Exploration Using Laser Scanner in GPS-Denied Scenarios\",\"authors\":\"Adam Niewola, L. Podsędkowski, Jakub Niedzwiedzki\",\"doi\":\"10.1109/RoMoCo.2019.8787362\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Mobile robots 6D outdoor localization algorithms using laser scanners in GPS-denied scenarios can rely on landmarks extraction or ICP-based scan matching. Both methods have significant disadvantages in rough terrain (lack of proper candidates for landmarks or problems with time consuming ICP-based scan matching), therefore, we proposed a new method based on robot's pose correction after every single laser scanner measurement, with the use of estimated distance between a scan point and the corresponding surfel on the reference 2.5D map known to mobile robot control system. The novelty of our method is that we do not have to make the point cloud registration into a common frame and we do not need extraction of landmarks from the point cloud as the landmark-based methods. Moreover, we do not require huge computational efforts in order to compare point clouds. We present the results of simulation tests using the data captured by FARO reference scanner and real terrain experiment with the use of our innovative laser scanner.\",\"PeriodicalId\":415070,\"journal\":{\"name\":\"2019 12th International Workshop on Robot Motion and Control (RoMoCo)\",\"volume\":\"71 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 12th International Workshop on Robot Motion and Control (RoMoCo)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/RoMoCo.2019.8787362\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 12th International Workshop on Robot Motion and Control (RoMoCo)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/RoMoCo.2019.8787362","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

使用激光扫描仪的移动机器人6D户外定位算法可以依赖于地标提取或基于icp的扫描匹配。这两种方法在粗糙地形中都存在明显的缺点(缺乏合适的地标候选物或基于icp的扫描匹配耗时问题),因此,我们提出了一种基于机器人每次激光扫描仪测量后的姿态校正的新方法,使用移动机器人控制系统已知的参考2.5D地图上扫描点与相应冲浪点之间的估计距离。该方法的新颖之处在于,我们不需要将点云配准到一个共同的框架中,也不需要像基于地标的方法那样从点云中提取地标。此外,我们不需要大量的计算来比较点云。本文介绍了利用FARO参考扫描仪捕获的数据进行模拟测试的结果,以及利用我们创新的激光扫描仪进行真实地形实验的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Point-to-Surfel-Distance- (PSD-) Based 6D Localization Algorithm for Rough Terrain Exploration Using Laser Scanner in GPS-Denied Scenarios
Mobile robots 6D outdoor localization algorithms using laser scanners in GPS-denied scenarios can rely on landmarks extraction or ICP-based scan matching. Both methods have significant disadvantages in rough terrain (lack of proper candidates for landmarks or problems with time consuming ICP-based scan matching), therefore, we proposed a new method based on robot's pose correction after every single laser scanner measurement, with the use of estimated distance between a scan point and the corresponding surfel on the reference 2.5D map known to mobile robot control system. The novelty of our method is that we do not have to make the point cloud registration into a common frame and we do not need extraction of landmarks from the point cloud as the landmark-based methods. Moreover, we do not require huge computational efforts in order to compare point clouds. We present the results of simulation tests using the data captured by FARO reference scanner and real terrain experiment with the use of our innovative laser scanner.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Predicting Vehicle Control Errors in Emergency Swerving Maneuvers Comparative study of muscles effort during gait phases for multi-muscle humanoids Adjustability for Grasping Force of Patients with Autism by iWakka: A Pilot Study Step climbing method for crawler type rescue robot using reinforcement learning with Proximal Policy Optimization Kinematic Simulator of e-Knee Robo that Reproduces Human Knee-Joint Movement
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1