{"title":"智能预测模型在尼日利亚潜在癌症问题病例预测中的实证评价","authors":"A. Ojugo, Chris Obaro Obruche","doi":"10.35877/mathscience614","DOIUrl":null,"url":null,"abstract":"The rapid rate as well as the volume in amount of data churned out on daily basis has necessitated the need for data mining process. Advanced by the field of data science with machine learning approaches as new paradigm and platform, it has become imperative to provide beneficial support in constructing models that can effectively assist domain experts/practitioners – to make comprehensive decisions regarding potential cases. The study uses deep learning prognosis to effectively respond to problematic cases of cancer in Nigeria. We use the fuzzy rule-based memetic model to predict potential problematic cases of cancer – predicting results from data samples collected from the Epidemiology laboratory at Federal Medical Center Asaba, Nigeria. Dataset is split into training (85%) and testing (15%) to aid model validation. Results indicate that age, obesity, environmental conditions and family relations (to the first and second degree) are critical factors to be watched for benign and malignant cancer types. Constructed model result shows high predictive capability strength compared to other models presented on similar studies.","PeriodicalId":431947,"journal":{"name":"ARRUS Journal of Mathematics and Applied Science","volume":"5 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-11-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Empirical Evaluation for Intelligent Predictive Models in Prediction of Potential Cancer Problematic Cases In Nigeria\",\"authors\":\"A. Ojugo, Chris Obaro Obruche\",\"doi\":\"10.35877/mathscience614\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The rapid rate as well as the volume in amount of data churned out on daily basis has necessitated the need for data mining process. Advanced by the field of data science with machine learning approaches as new paradigm and platform, it has become imperative to provide beneficial support in constructing models that can effectively assist domain experts/practitioners – to make comprehensive decisions regarding potential cases. The study uses deep learning prognosis to effectively respond to problematic cases of cancer in Nigeria. We use the fuzzy rule-based memetic model to predict potential problematic cases of cancer – predicting results from data samples collected from the Epidemiology laboratory at Federal Medical Center Asaba, Nigeria. Dataset is split into training (85%) and testing (15%) to aid model validation. Results indicate that age, obesity, environmental conditions and family relations (to the first and second degree) are critical factors to be watched for benign and malignant cancer types. Constructed model result shows high predictive capability strength compared to other models presented on similar studies.\",\"PeriodicalId\":431947,\"journal\":{\"name\":\"ARRUS Journal of Mathematics and Applied Science\",\"volume\":\"5 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-11-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ARRUS Journal of Mathematics and Applied Science\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.35877/mathscience614\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ARRUS Journal of Mathematics and Applied Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.35877/mathscience614","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Empirical Evaluation for Intelligent Predictive Models in Prediction of Potential Cancer Problematic Cases In Nigeria
The rapid rate as well as the volume in amount of data churned out on daily basis has necessitated the need for data mining process. Advanced by the field of data science with machine learning approaches as new paradigm and platform, it has become imperative to provide beneficial support in constructing models that can effectively assist domain experts/practitioners – to make comprehensive decisions regarding potential cases. The study uses deep learning prognosis to effectively respond to problematic cases of cancer in Nigeria. We use the fuzzy rule-based memetic model to predict potential problematic cases of cancer – predicting results from data samples collected from the Epidemiology laboratory at Federal Medical Center Asaba, Nigeria. Dataset is split into training (85%) and testing (15%) to aid model validation. Results indicate that age, obesity, environmental conditions and family relations (to the first and second degree) are critical factors to be watched for benign and malignant cancer types. Constructed model result shows high predictive capability strength compared to other models presented on similar studies.