利用嵌入式薄膜传感器提取分层模式转换导波响应

V. Rathod, Subrata Mukherjee, L. Udpa, Y. Deng
{"title":"利用嵌入式薄膜传感器提取分层模式转换导波响应","authors":"V. Rathod, Subrata Mukherjee, L. Udpa, Y. Deng","doi":"10.1109/ICPHM49022.2020.9187041","DOIUrl":null,"url":null,"abstract":"Delamination is the most common type of damage that can occur in a composite structure at a very early stage of its operation. Detection, localization and classification of delamination parameters in composite laminates assist in determining the operating condition of the structure. Such a task, especially involving global localization on the structure and local localization along the thickness of the laminate is difficult using guided waves that are inherently multimodal leading to complicated mixed mode response of transducers. This paper proposes the use of embedded thin film sensors to decouple the response due to each wave mode enabling easy interpretation of the signals for damage detection. Delamination damage has been considered and the strength of reflected guided wave modes has been studied in the purview of delamination localization along with the thickness. The variation of mode conversion strength for fundamental and higher order wave modes further provides additional data to determine the delamination parameters.","PeriodicalId":148899,"journal":{"name":"2020 IEEE International Conference on Prognostics and Health Management (ICPHM)","volume":"43 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Extracting Mode Converted Guided Wave Response due to Delamination using Embedded Thin Film Sensors\",\"authors\":\"V. Rathod, Subrata Mukherjee, L. Udpa, Y. Deng\",\"doi\":\"10.1109/ICPHM49022.2020.9187041\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Delamination is the most common type of damage that can occur in a composite structure at a very early stage of its operation. Detection, localization and classification of delamination parameters in composite laminates assist in determining the operating condition of the structure. Such a task, especially involving global localization on the structure and local localization along the thickness of the laminate is difficult using guided waves that are inherently multimodal leading to complicated mixed mode response of transducers. This paper proposes the use of embedded thin film sensors to decouple the response due to each wave mode enabling easy interpretation of the signals for damage detection. Delamination damage has been considered and the strength of reflected guided wave modes has been studied in the purview of delamination localization along with the thickness. The variation of mode conversion strength for fundamental and higher order wave modes further provides additional data to determine the delamination parameters.\",\"PeriodicalId\":148899,\"journal\":{\"name\":\"2020 IEEE International Conference on Prognostics and Health Management (ICPHM)\",\"volume\":\"43 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 IEEE International Conference on Prognostics and Health Management (ICPHM)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICPHM49022.2020.9187041\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE International Conference on Prognostics and Health Management (ICPHM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICPHM49022.2020.9187041","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

分层是复合材料结构在运行初期最常见的损伤类型。复合材料层合板中分层参数的检测、定位和分类有助于确定结构的运行状态。这样的任务,特别是涉及结构的全局定位和层合板厚度的局部定位,使用固有的多模态导波导致传感器复杂的混合模态响应是困难的。本文提出使用嵌入式薄膜传感器来解耦每个波模式的响应,从而易于解释用于损伤检测的信号。考虑了分层损伤,在分层局部化的范围内研究了反射导波模式的强度随厚度的变化。基波和高阶波模式转换强度的变化进一步为确定分层参数提供了额外的数据。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Extracting Mode Converted Guided Wave Response due to Delamination using Embedded Thin Film Sensors
Delamination is the most common type of damage that can occur in a composite structure at a very early stage of its operation. Detection, localization and classification of delamination parameters in composite laminates assist in determining the operating condition of the structure. Such a task, especially involving global localization on the structure and local localization along the thickness of the laminate is difficult using guided waves that are inherently multimodal leading to complicated mixed mode response of transducers. This paper proposes the use of embedded thin film sensors to decouple the response due to each wave mode enabling easy interpretation of the signals for damage detection. Delamination damage has been considered and the strength of reflected guided wave modes has been studied in the purview of delamination localization along with the thickness. The variation of mode conversion strength for fundamental and higher order wave modes further provides additional data to determine the delamination parameters.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A Novel Evaluation Framework for Unsupervised Domain Adaption on Remaining Useful Lifetime Estimation Bayesian Neural Network Based Method of Remaining Useful Life Prediction and Uncertainty Quantification for Aircraft Engine Semi-Supervised Learning Approach for Optimizing Condition-based-Maintenance (CBM) Decisions Designing a Reliability Quick Switching Sampling Plan based on the Lifetime Performance Index Automated detection of textured-surface defects using UNet-based semantic segmentation network
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1