区域分布式能源协调的地方电力市场设计

M. Ampatzis, P. Nguyen, W. Kling
{"title":"区域分布式能源协调的地方电力市场设计","authors":"M. Ampatzis, P. Nguyen, W. Kling","doi":"10.1109/ISGTEUROPE.2014.7028888","DOIUrl":null,"url":null,"abstract":"The increasing penetration of distributed energy resources at the distribution grid level creates concerns about their successful integration in the existing electric grid, designed for centralized generation by large power plants. Failure to the proper integration of distributed energy resources might lead to violation of technical limits in the grid, thus lower power quality for the end-user, and reduces the efficiency of the electricity market. Nevertheless, the coexistence of generation and consumption at the premises of a neighborhood, caused by the increasing penetration of distributed energy resources such as photovoltaic generators in the distribution grid, diminishes the power transmission losses, inherent to a grid based on central power generation. Moreover, it enables the creation of a local electricity market, a step towards the market and technical integration of distributed energy resources if combined with the concept of market-based control. While market-based control seems to be the dominant solution for the control of distributed energy resources, the implementation of market-based control can be distributed or centralized and depends on the electricity market design. This work focuses on identifying the characteristics of the participants of the electricity market for the case study of residential customers with photovoltaic generation, residential energy storage and inelastic demand. Design choices are derived based on these characteristics in order to realize market-based control for the coordination of distributed energy resources via an efficient local electricity market.","PeriodicalId":299515,"journal":{"name":"IEEE PES Innovative Smart Grid Technologies, Europe","volume":"369 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"60","resultStr":"{\"title\":\"Local electricity market design for the coordination of distributed energy resources at district level\",\"authors\":\"M. Ampatzis, P. Nguyen, W. Kling\",\"doi\":\"10.1109/ISGTEUROPE.2014.7028888\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The increasing penetration of distributed energy resources at the distribution grid level creates concerns about their successful integration in the existing electric grid, designed for centralized generation by large power plants. Failure to the proper integration of distributed energy resources might lead to violation of technical limits in the grid, thus lower power quality for the end-user, and reduces the efficiency of the electricity market. Nevertheless, the coexistence of generation and consumption at the premises of a neighborhood, caused by the increasing penetration of distributed energy resources such as photovoltaic generators in the distribution grid, diminishes the power transmission losses, inherent to a grid based on central power generation. Moreover, it enables the creation of a local electricity market, a step towards the market and technical integration of distributed energy resources if combined with the concept of market-based control. While market-based control seems to be the dominant solution for the control of distributed energy resources, the implementation of market-based control can be distributed or centralized and depends on the electricity market design. This work focuses on identifying the characteristics of the participants of the electricity market for the case study of residential customers with photovoltaic generation, residential energy storage and inelastic demand. Design choices are derived based on these characteristics in order to realize market-based control for the coordination of distributed energy resources via an efficient local electricity market.\",\"PeriodicalId\":299515,\"journal\":{\"name\":\"IEEE PES Innovative Smart Grid Technologies, Europe\",\"volume\":\"369 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"60\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE PES Innovative Smart Grid Technologies, Europe\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISGTEUROPE.2014.7028888\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE PES Innovative Smart Grid Technologies, Europe","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISGTEUROPE.2014.7028888","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 60

摘要

分布式能源在配电网层面的日益普及引起了人们对其能否成功整合到现有电网的关注,而现有电网是为大型发电厂集中发电而设计的。如果分布式能源不能进行合理的整合,可能会导致电网的技术限制,从而降低终端用户的电能质量,降低电力市场的效率。然而,由于分布式能源(如光伏发电机)在配电网中的渗透程度越来越高,在小区内发电和用电并存,减少了以集中发电为基础的电网固有的输电损耗。此外,它能够建立一个地方电力市场,如果结合市场控制的概念,这是朝着分布式能源的市场和技术一体化迈出的一步。虽然市场控制似乎是分布式能源控制的主要解决方案,但市场控制的实施可以是分布式的,也可以是集中式的,这取决于电力市场的设计。本研究的重点是确定电力市场参与者的特征,以光伏发电、住宅储能和非弹性需求的住宅客户为例进行研究。设计选择是基于这些特征,通过有效的本地电力市场实现分布式能源协调的市场化控制。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Local electricity market design for the coordination of distributed energy resources at district level
The increasing penetration of distributed energy resources at the distribution grid level creates concerns about their successful integration in the existing electric grid, designed for centralized generation by large power plants. Failure to the proper integration of distributed energy resources might lead to violation of technical limits in the grid, thus lower power quality for the end-user, and reduces the efficiency of the electricity market. Nevertheless, the coexistence of generation and consumption at the premises of a neighborhood, caused by the increasing penetration of distributed energy resources such as photovoltaic generators in the distribution grid, diminishes the power transmission losses, inherent to a grid based on central power generation. Moreover, it enables the creation of a local electricity market, a step towards the market and technical integration of distributed energy resources if combined with the concept of market-based control. While market-based control seems to be the dominant solution for the control of distributed energy resources, the implementation of market-based control can be distributed or centralized and depends on the electricity market design. This work focuses on identifying the characteristics of the participants of the electricity market for the case study of residential customers with photovoltaic generation, residential energy storage and inelastic demand. Design choices are derived based on these characteristics in order to realize market-based control for the coordination of distributed energy resources via an efficient local electricity market.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Discrete elastic residential load response under variable pricing schemes Challenges in utilisation of demand side response for operating reserve provision Managing energy in time and space in smart grids using TRIANA Optimal scheduling of electrical vehicle charging under two types of steering signals A design-driven approach for developing new products for smart grid households
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1