基于k均值的RGB和HSV色彩空间卫星图像聚类性能

G. Kumar, P. Parth, Sarthi Prabhat, Ranjan R Rajesh
{"title":"基于k均值的RGB和HSV色彩空间卫星图像聚类性能","authors":"G. Kumar, P. Parth, Sarthi Prabhat, Ranjan R Rajesh","doi":"10.1109/ICRTIT.2016.7569523","DOIUrl":null,"url":null,"abstract":"This paper throws a light on the available clustering techniques and algorithms, k-means is used to cluster standard and satellite image in RGB and HSV color space. Normally satellite images comes with data and noises, in order to extract meaningful information efficiently there is a need of image clustering and performance of clustering based on pixel classification is greatly affected by the color space we selected, because image analysis in terms of Red, Green and Blue components is more difficult as compared to in terms of hue, saturation and value in context of differentiation an object. Our analysis of image clustering in two different color spaces using the k-means technique shows that clustering performance decreases with RGB color space when compared to HSV color space. CHI, DBI and SE indexes are calculated and compared.","PeriodicalId":351133,"journal":{"name":"2016 International Conference on Recent Trends in Information Technology (ICRTIT)","volume":"171 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-04-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"15","resultStr":"{\"title\":\"Performance of k-means based satellite image clustering in RGB and HSV color space\",\"authors\":\"G. Kumar, P. Parth, Sarthi Prabhat, Ranjan R Rajesh\",\"doi\":\"10.1109/ICRTIT.2016.7569523\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper throws a light on the available clustering techniques and algorithms, k-means is used to cluster standard and satellite image in RGB and HSV color space. Normally satellite images comes with data and noises, in order to extract meaningful information efficiently there is a need of image clustering and performance of clustering based on pixel classification is greatly affected by the color space we selected, because image analysis in terms of Red, Green and Blue components is more difficult as compared to in terms of hue, saturation and value in context of differentiation an object. Our analysis of image clustering in two different color spaces using the k-means technique shows that clustering performance decreases with RGB color space when compared to HSV color space. CHI, DBI and SE indexes are calculated and compared.\",\"PeriodicalId\":351133,\"journal\":{\"name\":\"2016 International Conference on Recent Trends in Information Technology (ICRTIT)\",\"volume\":\"171 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-04-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"15\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 International Conference on Recent Trends in Information Technology (ICRTIT)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICRTIT.2016.7569523\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 International Conference on Recent Trends in Information Technology (ICRTIT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICRTIT.2016.7569523","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 15

摘要

本文介绍了现有的聚类技术和算法,采用k-means对RGB和HSV色彩空间的标准图像和卫星图像进行聚类。通常,卫星图像带有数据和噪声,为了有效地提取有意义的信息,需要对图像进行聚类,而基于像素分类的聚类性能受到我们所选择的颜色空间的很大影响,因为在区分对象的背景下,根据红色、绿色和蓝色分量进行图像分析比根据色调、饱和度和值进行分析要困难得多。我们使用k-means技术对两种不同颜色空间中的图像聚类进行了分析,结果表明与HSV颜色空间相比,RGB颜色空间的聚类性能有所下降。计算并比较了CHI、DBI和SE指数。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Performance of k-means based satellite image clustering in RGB and HSV color space
This paper throws a light on the available clustering techniques and algorithms, k-means is used to cluster standard and satellite image in RGB and HSV color space. Normally satellite images comes with data and noises, in order to extract meaningful information efficiently there is a need of image clustering and performance of clustering based on pixel classification is greatly affected by the color space we selected, because image analysis in terms of Red, Green and Blue components is more difficult as compared to in terms of hue, saturation and value in context of differentiation an object. Our analysis of image clustering in two different color spaces using the k-means technique shows that clustering performance decreases with RGB color space when compared to HSV color space. CHI, DBI and SE indexes are calculated and compared.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Elaborative survey on storage technologies for XML big data: A real-time approach Design space exploration for IoT based traffic density indication system A novel image steganographic technique using fast fourier transform InfluenceRank: A machine learning approach to measure influence of Twitter users Kalman filter based phase delay reduction technique
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1