改进汉语情态“LE”识别规则的误差驱动方法

Yihui Zhou, Hongying Zan, Lingling Mu, Yingcheng Yuan
{"title":"改进汉语情态“LE”识别规则的误差驱动方法","authors":"Yihui Zhou, Hongying Zan, Lingling Mu, Yingcheng Yuan","doi":"10.1109/NLPKE.2010.5587825","DOIUrl":null,"url":null,"abstract":"We have a “Trinity” way for the recognition of Chinese modality “LE”, in which dictionary, usage rule base and usage corpora combine as the knowledge base. Handcrafted rules can hardly cover all usages in the real texts. So this paper proposes an error driven method for the automatic rules improvement. Experimental results show that, after the automatic rules improvement, the recognition precision of the modality “LE” improves by over 1.85%.","PeriodicalId":259975,"journal":{"name":"Proceedings of the 6th International Conference on Natural Language Processing and Knowledge Engineering(NLPKE-2010)","volume":"269 10-13","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"An error driven method to improve rules for the recognition of Chinese modality “LE”\",\"authors\":\"Yihui Zhou, Hongying Zan, Lingling Mu, Yingcheng Yuan\",\"doi\":\"10.1109/NLPKE.2010.5587825\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We have a “Trinity” way for the recognition of Chinese modality “LE”, in which dictionary, usage rule base and usage corpora combine as the knowledge base. Handcrafted rules can hardly cover all usages in the real texts. So this paper proposes an error driven method for the automatic rules improvement. Experimental results show that, after the automatic rules improvement, the recognition precision of the modality “LE” improves by over 1.85%.\",\"PeriodicalId\":259975,\"journal\":{\"name\":\"Proceedings of the 6th International Conference on Natural Language Processing and Knowledge Engineering(NLPKE-2010)\",\"volume\":\"269 10-13\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-09-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 6th International Conference on Natural Language Processing and Knowledge Engineering(NLPKE-2010)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/NLPKE.2010.5587825\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 6th International Conference on Natural Language Processing and Knowledge Engineering(NLPKE-2010)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/NLPKE.2010.5587825","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

我们提出了汉语情态“LE”识别的“三位一体”方法,即词典、用法规则库和用法语料库相结合作为知识库。手工制定的规则很难涵盖实际文本中的所有用法。为此,本文提出了一种误差驱动的规则自动改进方法。实验结果表明,经过自动规则改进后,模态“LE”的识别精度提高了1.85%以上。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
An error driven method to improve rules for the recognition of Chinese modality “LE”
We have a “Trinity” way for the recognition of Chinese modality “LE”, in which dictionary, usage rule base and usage corpora combine as the knowledge base. Handcrafted rules can hardly cover all usages in the real texts. So this paper proposes an error driven method for the automatic rules improvement. Experimental results show that, after the automatic rules improvement, the recognition precision of the modality “LE” improves by over 1.85%.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Dashboard: An integration and testing platform based on backboard architecture for NLP applications Chinese semantic role labeling based on semantic knowledge Transitivity in semantic relation learning Wisdom media “CAIWA Channel” based on natural language interface agent A new cascade algorithm based on CRFs for recognizing Chinese verb-object collocation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1