{"title":"为物联网应用重新设计具有完全集成稳压器的移动SoC的电源完整性挑战","authors":"Y. F. Shen","doi":"10.1109/SAPIW.2018.8401654","DOIUrl":null,"url":null,"abstract":"The demand for connected smart cars has grown exponentially in the past few years. To meet consumer's digital lifestyle needs and take part in this emerging market, microprocessor companies, such as Intel®, are shifting a focus to automotive SoC package designs. This paper examines the differences in design specifications between automotive and mobile and the implications to Power Integrity. The automotive use case, temperature cycling, and reliability qualifications are more stringent and add to the Power Integrity challenges. Frequency and time domain simulations were performed for all Fully Integrated Voltage Regulator (FIVR) and non-FIVR rails and compared between automotive vs. mobile.","PeriodicalId":423850,"journal":{"name":"2018 IEEE 22nd Workshop on Signal and Power Integrity (SPI)","volume":"36 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-05-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Power integrity challenges of re-designing a mobile SoC with fully integrated voltage regulator to IoT applications\",\"authors\":\"Y. F. Shen\",\"doi\":\"10.1109/SAPIW.2018.8401654\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The demand for connected smart cars has grown exponentially in the past few years. To meet consumer's digital lifestyle needs and take part in this emerging market, microprocessor companies, such as Intel®, are shifting a focus to automotive SoC package designs. This paper examines the differences in design specifications between automotive and mobile and the implications to Power Integrity. The automotive use case, temperature cycling, and reliability qualifications are more stringent and add to the Power Integrity challenges. Frequency and time domain simulations were performed for all Fully Integrated Voltage Regulator (FIVR) and non-FIVR rails and compared between automotive vs. mobile.\",\"PeriodicalId\":423850,\"journal\":{\"name\":\"2018 IEEE 22nd Workshop on Signal and Power Integrity (SPI)\",\"volume\":\"36 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-05-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 IEEE 22nd Workshop on Signal and Power Integrity (SPI)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SAPIW.2018.8401654\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE 22nd Workshop on Signal and Power Integrity (SPI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SAPIW.2018.8401654","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Power integrity challenges of re-designing a mobile SoC with fully integrated voltage regulator to IoT applications
The demand for connected smart cars has grown exponentially in the past few years. To meet consumer's digital lifestyle needs and take part in this emerging market, microprocessor companies, such as Intel®, are shifting a focus to automotive SoC package designs. This paper examines the differences in design specifications between automotive and mobile and the implications to Power Integrity. The automotive use case, temperature cycling, and reliability qualifications are more stringent and add to the Power Integrity challenges. Frequency and time domain simulations were performed for all Fully Integrated Voltage Regulator (FIVR) and non-FIVR rails and compared between automotive vs. mobile.