利用人工神经网络和决策树方法检测欺诈交易

Y. Işık, İlker Kefe, Jale Sağlar
{"title":"利用人工神经网络和决策树方法检测欺诈交易","authors":"Y. Işık, İlker Kefe, Jale Sağlar","doi":"10.15295/bmij.v11i2.2200","DOIUrl":null,"url":null,"abstract":"The accounting systems generate a large amount of data due to financial transactions. Intentionally fraudulent transactions can occur in high-dimensional and large numbers of emerging data. While many methods can be used for the estimation and detection of fraudulent transactions in accounting, which differ in the audit process, scope and application method, data mining methods can also be used today due to a large number of data and the desire not to narrow the scope of the audit. This study tested the accuracy of detecting fraudulent transactions using artificial neural networks and decision tree methods. According to the results of the analysis test data set for detecting fraud or error risk, 99.7981% accuracy was obtained in the artificial neural networks method and 99.9899% in the decision tree method.","PeriodicalId":253954,"journal":{"name":"Business & Management Studies: An International Journal","volume":"219 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-06-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Detection of fraudulent transactions using artificial neural networks and decision tree methods\",\"authors\":\"Y. Işık, İlker Kefe, Jale Sağlar\",\"doi\":\"10.15295/bmij.v11i2.2200\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The accounting systems generate a large amount of data due to financial transactions. Intentionally fraudulent transactions can occur in high-dimensional and large numbers of emerging data. While many methods can be used for the estimation and detection of fraudulent transactions in accounting, which differ in the audit process, scope and application method, data mining methods can also be used today due to a large number of data and the desire not to narrow the scope of the audit. This study tested the accuracy of detecting fraudulent transactions using artificial neural networks and decision tree methods. According to the results of the analysis test data set for detecting fraud or error risk, 99.7981% accuracy was obtained in the artificial neural networks method and 99.9899% in the decision tree method.\",\"PeriodicalId\":253954,\"journal\":{\"name\":\"Business & Management Studies: An International Journal\",\"volume\":\"219 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-06-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Business & Management Studies: An International Journal\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.15295/bmij.v11i2.2200\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Business & Management Studies: An International Journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.15295/bmij.v11i2.2200","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

由于金融交易,会计系统产生了大量的数据。故意欺诈交易可能发生在高维和大量新兴数据中。虽然可以使用许多方法来估计和检测会计中的欺诈交易,这些方法在审计流程,范围和应用方法上有所不同,但由于数据量大,并且希望不缩小审计范围,今天也可以使用数据挖掘方法。本研究测试了人工神经网络和决策树方法检测欺诈交易的准确性。从检测欺诈或错误风险的分析测试数据集的结果来看,人工神经网络方法的准确率为99.7981%,决策树方法的准确率为99.9899%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Detection of fraudulent transactions using artificial neural networks and decision tree methods
The accounting systems generate a large amount of data due to financial transactions. Intentionally fraudulent transactions can occur in high-dimensional and large numbers of emerging data. While many methods can be used for the estimation and detection of fraudulent transactions in accounting, which differ in the audit process, scope and application method, data mining methods can also be used today due to a large number of data and the desire not to narrow the scope of the audit. This study tested the accuracy of detecting fraudulent transactions using artificial neural networks and decision tree methods. According to the results of the analysis test data set for detecting fraud or error risk, 99.7981% accuracy was obtained in the artificial neural networks method and 99.9899% in the decision tree method.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Bibliometric analysis of studies on "ethical leadership and sustainability" using a visual mapping technique Examining the multifaceted nature of organizational justice: An integrated analysis using factor analysis and artificial neural networks Bilgi paylaşımının erdemli raporlama (whistleblowing) üzerindeki etkisinde birey-örgüt uyumunun aracılık rolü Avrupa girişimcilik yetkinlik çerçevesi (Entrecomp) üzerine bir inceleme ve iyi uygulama örnekleri Kurumsal sosyal sorumluluk algısının marka vefasına etkisinde marka aşkının aracılık rolü
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1